Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from matplotlib import ticker
|
4 |
+
from sklearn import manifold, datasets
|
5 |
+
from mpl_toolkits.mplot3d import Axes3D
|
6 |
+
|
7 |
+
|
8 |
+
def compare_manifold_learning(methods, n_samples, n_neighbors, n_components, perplexity):
|
9 |
+
S_points, S_color = datasets.make_s_curve(n_samples, random_state=0)
|
10 |
+
transformed_data = []
|
11 |
+
|
12 |
+
if len(methods) == 1:
|
13 |
+
method = methods[0]
|
14 |
+
manifold_method = {
|
15 |
+
"Locally Linear Embeddings Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
16 |
+
"Locally Linear Embeddings LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
17 |
+
"Locally Linear Embeddings Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
18 |
+
"Locally Linear Embeddings Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
19 |
+
"Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1),
|
20 |
+
"MultiDimensional Scaling": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False),
|
21 |
+
"Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors),
|
22 |
+
"T-distributed Stochastic Neighbor Embedding": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0)
|
23 |
+
}[method]
|
24 |
+
S_transformed = manifold_method.fit_transform(S_points)
|
25 |
+
transformed_data.append(S_transformed)
|
26 |
+
else:
|
27 |
+
for method in methods:
|
28 |
+
manifold_method = {
|
29 |
+
"Locally Linear Embeddings Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
30 |
+
"Locally Linear Embeddings LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
31 |
+
"Locally Linear Embeddings Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
32 |
+
"Locally Linear Embeddings Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
33 |
+
"Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1),
|
34 |
+
"MultiDimensional Scaling": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False),
|
35 |
+
"Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors),
|
36 |
+
"T-distributed Stochastic Neighbor Embedding": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0)
|
37 |
+
}[method]
|
38 |
+
S_transformed = manifold_method.fit_transform(S_points)
|
39 |
+
transformed_data.append(S_transformed)
|
40 |
+
|
41 |
+
fig, axs = plt.subplots(1, len(transformed_data), figsize=(6 * len(transformed_data), 6))
|
42 |
+
fig.suptitle("Manifold Learning Comparison", fontsize=16)
|
43 |
+
|
44 |
+
if len(methods) == 1:
|
45 |
+
ax = axs
|
46 |
+
method = methods[0]
|
47 |
+
data = transformed_data[0]
|
48 |
+
ax.scatter(data[:, 0], data[:, 1], c=S_color, cmap=plt.cm.Spectral)
|
49 |
+
ax.set_title(f"Method: {method}")
|
50 |
+
ax.axis("tight")
|
51 |
+
ax.axis("off")
|
52 |
+
ax.xaxis.set_major_locator(ticker.NullLocator())
|
53 |
+
ax.yaxis.set_major_locator(ticker.NullLocator())
|
54 |
+
else:
|
55 |
+
for ax, method, data in zip(axs, methods, transformed_data):
|
56 |
+
ax.scatter(data[:, 0], data[:, 1], c=S_color, cmap=plt.cm.Spectral)
|
57 |
+
ax.set_title(f"Method: {method}")
|
58 |
+
ax.axis("tight")
|
59 |
+
ax.axis("off")
|
60 |
+
ax.xaxis.set_major_locator(ticker.NullLocator())
|
61 |
+
ax.yaxis.set_major_locator(ticker.NullLocator())
|
62 |
+
|
63 |
+
plt.tight_layout()
|
64 |
+
plt.savefig("plot.png")
|
65 |
+
plt.close()
|
66 |
+
|
67 |
+
return "plot.png"
|
68 |
+
|
69 |
+
method_options = [
|
70 |
+
"Locally Linear Embeddings Standard",
|
71 |
+
"Locally Linear Embeddings LTSA",
|
72 |
+
"Locally Linear Embeddings Hessian",
|
73 |
+
"Locally Linear Embeddings Modified",
|
74 |
+
"Isomap",
|
75 |
+
"MultiDimensional Scaling",
|
76 |
+
"Spectral Embedding",
|
77 |
+
"T-distributed Stochastic Neighbor Embedding"
|
78 |
+
]
|
79 |
+
|
80 |
+
inputs = [
|
81 |
+
gr.components.CheckboxGroup(method_options, label="Manifold Learning Methods"),
|
82 |
+
gr.inputs.Slider(default=1500, label="Number of Samples", maximum=5000),
|
83 |
+
gr.inputs.Slider(default=12, label="Number of Neighbors"),
|
84 |
+
gr.inputs.Slider(default=2, label="Number of Components"),
|
85 |
+
gr.inputs.Slider(default=30, label="Perplexity (for t-SNE)")
|
86 |
+
]
|
87 |
+
|
88 |
+
gr.Interface(
|
89 |
+
fn=compare_manifold_learning,
|
90 |
+
inputs=inputs,
|
91 |
+
outputs="image",
|
92 |
+
examples=[
|
93 |
+
[method_options, 1500, 12, 2, 30]
|
94 |
+
],
|
95 |
+
title="Manifold Learning Comparison",
|
96 |
+
description="This code demonstrates a comparison of manifold learning methods using the S-curve dataset. Manifold learning techniques aim to uncover the underlying structure and relationships within high-dimensional data by projecting it onto a lower-dimensional space. This comparison allows you to explore the effects of different methods on the dataset. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html"
|
97 |
+
).launch()
|