leukolook-api / app.py
skibi11's picture
updated app.py
c7d17de verified
raw
history blame
7.08 kB
# Final, Complete, and Working app.py for Hugging Face Space
import os
import cv2
import tempfile
import numpy as np
import uvicorn
import requests
import io
from PIL import Image
from inference_sdk import InferenceHTTPClient
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import tensorflow as tf
from huggingface_hub import hf_hub_download
import gradio as gr
# --- 1. Configuration and Model Loading ---
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
leuko_model = None
try:
model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras")
leuko_model = tf.keras.models.load_model(model_path)
print("--- LEUKOCORIA MODEL LOADED SUCCESSFULLY! ---")
except Exception as e:
print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---")
raise RuntimeError(f"Could not load leukocoria model: {e}")
# --- 2. All Helper Functions ---
def enhance_image_unsharp_mask(image, strength=0.5, radius=5):
blur = cv2.GaussianBlur(image, (radius, radius), 0)
return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0)
def detect_faces_roboflow(image_path):
return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])
def detect_eyes_roboflow(image_path, raw_image):
"""Calls Roboflow to find eyes and returns cropped images of them."""
try:
resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3")
crops = []
for p in resp.get("predictions", []):
x1 = int(p['x'] - p['width'] / 2)
y1 = int(p['y'] - p['height'] / 2)
x2 = int(p['x'] + p['width'] / 2)
y2 = int(p['y'] + p['height'] / 2)
crop = raw_image[y1:y2, x1:x2]
if crop.size > 0:
crops.append(crop)
# On success, return the crops and None for the error message
return crops, None
except Exception as e:
# If Roboflow fails, return an empty list and the error message
print(f"Error in Roboflow eye detection: {e}")
return [], str(e)
def get_largest_iris_prediction(eye_crop):
"Calls Roboflow to find the largest iris using a temporary file for reliability."
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
cv2.imwrite(tmp.name, eye_crop)
temp_iris_path = tmp.name
try:
# Use the file path for inference, which is more robust
resp = CLIENT_IRIS.infer(temp_iris_path, model_id="iris_120_set/7")
preds = resp.get("predictions", [])
return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None
finally:
# Ensure the temporary file is always deleted
os.remove(temp_iris_path)
def run_leukocoria_prediction(iris_crop):
if leuko_model is None: return {"error": "Leukocoria model not loaded"}, 0.0
img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
enh = enhance_image_unsharp_mask(np.array(img_pil))
enh_rs = cv2.resize(enh, (224, 224))
img_array = np.array(enh_rs) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = leuko_model.predict(img_array)
confidence = float(prediction[0][0])
has_leuko = confidence > 0.5
return has_leuko, confidence
# --- 3. FastAPI Application ---
app = FastAPI()
# In app.py - an updated full_detection_pipeline function
@app.post("/detect/")
async def full_detection_pipeline(image: UploadFile = File(...)):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
contents = await image.read()
tmp.write(contents)
temp_image_path = tmp.name
try:
raw_image = cv2.imread(temp_image_path)
if raw_image is None:
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
if not detect_faces_roboflow(temp_image_path):
return JSONResponse(status_code=400, content={"error": "No face detected."})
eye_crops, error_msg = detect_eyes_roboflow(temp_image_path, raw_image)
if error_msg or len(eye_crops) != 2:
return JSONResponse(status_code=200, content={"warnings": ["Exactly two eyes not detected."]})
eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])
# Prepare to store all our results
flags = {}
eye_images_b64 = {}
for i, eye_crop in enumerate(eye_crops):
side = "left" if i == 0 else "right"
# --- NEW: Encode the cropped eye image to Base64 ---
is_success, buffer = cv2.imencode(".jpg", eye_crop)
if is_success:
eye_images_b64[side] = "data:image/jpeg;base64," + base64.b64encode(buffer).decode("utf-8")
pred = get_largest_iris_prediction(eye_crop)
if pred:
x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2)
x2, y2 = int(pred['x'] + pred['width'] / 2), int(pred['y'] + pred['height'] / 2)
iris_crop = eye_crop[y1:y2, x1:x2]
has_leuko, confidence = run_leukocoria_prediction(iris_crop)
flags[side] = has_leuko
else:
flags[side] = None
# --- NEW: Include the images in the final response ---
return JSONResponse(content={
"leukocoria": flags,
"warnings": [],
"two_eyes": eye_images_b64 # Add the eye images here
})
finally:
os.remove(temp_image_path)
# --- 4. Create and Mount the Gradio UI for a professional homepage ---
def gradio_wrapper(image_array):
"""A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
try:
pil_image = Image.fromarray(image_array)
with io.BytesIO() as buffer:
pil_image.save(buffer, format="JPEG")
files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
response = requests.post("http://127.0.0.1:7860/detect/", files=files)
if response.status_code == 200:
return response.json()
else:
return {"error": f"API Error {response.status_code}", "details": response.text}
except Exception as e:
return {"error": str(e)}
gradio_ui = gr.Interface(
fn=gradio_wrapper,
inputs=gr.Image(type="numpy", label="Upload an eye image to test the full pipeline"),
outputs=gr.JSON(label="Analysis Results"),
title="LeukoLook Eye Detector",
description="A demonstration of the LeukoLook detection model pipeline."
)
app = gr.mount_gradio_app(app, gradio_ui, path="/")
# --- 5. Run the server ---
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)