DocQA / src /doc_qa_1.py
singhdevendra58's picture
Upload 2 files
d23fb76 verified
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
from transformers import pipeline
from langchain.chains.question_answering import load_qa_chain
import os
# Step 1: Load QA pipeline (don't wrap in HuggingFacePipeline)
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
qa_pipeline = pipeline("question-answering", model="deepset/xlm-roberta-base-squad2")
multi_directory_path=r'tmp/'
def docs_vector_index():
from langchain.document_loaders import DirectoryLoader
# Define a directory path
directory_path = r"C:\Users\savni\PycharmProjects\DocsSearchEngine\tmp"
# Create the DirectoryLoader, specifying loaders for each file type
loader = DirectoryLoader(
directory_path,
glob="**/*", # This pattern loads all files; modify as needed
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024, chunk_overlap=100, separators=[" ", ",", "\n", "."]
)
print(docs)
docs_chunks = text_splitter.split_documents(docs)
print(f"docs_chunks length: {len(docs_chunks)}")
print('********************docs_chunks',docs_chunks)
if len(docs_chunks)>0:
db = FAISS.from_documents(docs_chunks, embeddings)
return db
else:
return ''
def run_custom_qa(question, retrieved_docs):
context = " ".join([doc.page_content for doc in retrieved_docs])
output = qa_pipeline(question=question, context=context)
return output #output["answer"]
# # Step 6: Ask question
# question = "東京大学はいつ設立されましたか?"
# relevant_docs = retriever.get_relevant_documents(question)
# answer = run_custom_qa(question, relevant_docs)
#
# print("Answer:", answer)
def doc_qa(query, db):
print("*************************custom qa doc_qa",query)
retriever = db.as_retriever()
relevant_docs = retriever.get_relevant_documents(query)
response=run_custom_qa(query, relevant_docs)
print('response', response)
return response