File size: 4,795 Bytes
1e17e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8418ff
 
1e17e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import Optional, List

from langchain.document_loaders import TextLoader  #for textfiles
from langchain.text_splitter import CharacterTextSplitter #text splitter
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models

from langchain.document_loaders import UnstructuredPDFLoader  #load pdf
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredURLLoader  #load urls into docoument-loader
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
import os
from langchain.document_loaders import TextLoader, PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.base_language import BaseLanguageModel
from docx import Document
from langchain.document_loaders import DirectoryLoader
multi_directory_path=r'tmp/'

from transformers import pipeline

from sentence_transformers import SentenceTransformer
#model = SentenceTransformer("sentence-transformers/LaBSE")
embeddings = HuggingFaceEmbeddings(model_name='setu4993/LaBSE')

from langchain_community.document_loaders import TextLoader, PyPDFLoader, Docx2txtLoader

after_rag_template = """Answer the question based only on the following context:
   {context}
   Question: {question}
   """
#pipe = pipeline("text2text-generation", model="google/flan-t5-large" ,max_new_tokens=100)
#pipe = pipeline("text2text-generation", model="google/mt5-large" ,max_new_tokens=200)
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
#tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b", use_fast=False)
#model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-base")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

#tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b")
#model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b")
#pipe = pipeline("text2text-generation", model="rinna/bilingual-gpt-neox-4b" ,max_new_tokens=200)
#pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200)

pipe = pipeline("question-answering", model="deepset/xlm-roberta-base-squad2")

llm = HuggingFacePipeline(pipeline=pipe)

def run_custom_qa(question, retrieved_docs):
    context = " ".join([doc.page_content for doc in retrieved_docs])
    output = pipe(question=question, context=context)
    return output["answer"]

def docs_vector_index():
    from langchain.document_loaders import DirectoryLoader
    # Define a directory path
    directory_path = r"C:\Users\savni\PycharmProjects\DocsSearchEngine\tmp"

    # Create the DirectoryLoader, specifying loaders for each file type
    loader = DirectoryLoader(
        directory_path,
        glob="**/*",  # This pattern loads all files; modify as needed

    )
    docs = loader.load()

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1024, chunk_overlap=100, separators=[" ", ",", "\n", "."]
    )
    print(docs)
    docs_chunks = text_splitter.split_documents(docs)

    print(f"docs_chunks length: {len(docs_chunks)}")
    print('********************docs_chunks',docs_chunks)
    if len(docs_chunks)>0:
        db = FAISS.from_documents(docs_chunks, embeddings)
        return db
    else:
        return ''


#chain = load_qa_chain(llm, chain_type="stuff")

from langchain.prompts import PromptTemplate

template = """You are an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. Below is some information. 
{context}

Based on the above information only, answer the below question. 

{question} Be concise."""

prompt = PromptTemplate.from_template(template)
print(prompt.input_variables)


#query_llm = LLMChain(llm=llm, prompt=prompt)

# def doc_qa1(query, db):
#     similar_doc = db.similarity_search(query, k=2)
#     doc_c=[]
#     for c in similar_doc:
#         doc_c.append(c.page_content)
#     context=''.join(doc_c)
#     #response = query_llm.run({"context": context, "question": query})
#     response = query_llm.run(context=context, question=query)
#     print('response',response)
#     return response

def doc_qa(query, db):
    print("*************************custom qa doc_qa",query)
    retriever = db.as_retriever()
    relevant_docs = retriever.get_relevant_documents(query)
    response=run_custom_qa(query, relevant_docs)
    print('response', response)
    return response