Update app.py
Browse files
app.py
CHANGED
@@ -359,7 +359,7 @@ demo = gr.Interface(
|
|
359 |
|
360 |
demo.launch()
|
361 |
'''
|
362 |
-
|
363 |
import gradio as gr
|
364 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
365 |
import tensorflow as tf
|
@@ -534,7 +534,159 @@ demo = gr.TabbedInterface(
|
|
534 |
)
|
535 |
|
536 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
|
539 |
|
540 |
|
|
|
359 |
|
360 |
demo.launch()
|
361 |
'''
|
362 |
+
'''
|
363 |
import gradio as gr
|
364 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
365 |
import tensorflow as tf
|
|
|
534 |
)
|
535 |
|
536 |
demo.launch()
|
537 |
+
'''
|
538 |
+
import gradio as gr
|
539 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
540 |
+
import torch
|
541 |
+
from scipy.special import softmax
|
542 |
+
import praw
|
543 |
+
import os
|
544 |
+
import pytesseract
|
545 |
+
from PIL import Image
|
546 |
+
import cv2
|
547 |
+
import numpy as np
|
548 |
+
import re
|
549 |
+
import matplotlib.pyplot as plt
|
550 |
+
import pandas as pd
|
551 |
+
|
552 |
+
# Load main lightweight model (PyTorch based)
|
553 |
+
main_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
554 |
+
model = AutoModelForSequenceClassification.from_pretrained(main_model_name)
|
555 |
+
tokenizer = AutoTokenizer.from_pretrained(main_model_name)
|
556 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
557 |
+
model.to(device)
|
558 |
|
559 |
+
# Load fallback model
|
560 |
+
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
561 |
+
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
562 |
+
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name).to(device)
|
563 |
+
|
564 |
+
# Reddit API setup
|
565 |
+
reddit = praw.Reddit(
|
566 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
567 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
568 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui-finalyear2025-shrish191")
|
569 |
+
)
|
570 |
+
|
571 |
+
def fetch_reddit_text(reddit_url):
|
572 |
+
try:
|
573 |
+
submission = reddit.submission(url=reddit_url)
|
574 |
+
return f"{submission.title}\n\n{submission.selftext}"
|
575 |
+
except Exception as e:
|
576 |
+
return f"Error fetching Reddit post: {str(e)}"
|
577 |
+
|
578 |
+
def fallback_classifier(text):
|
579 |
+
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
580 |
+
with torch.no_grad():
|
581 |
+
output = fallback_model(**encoded_input)
|
582 |
+
scores = softmax(output.logits.cpu().numpy()[0])
|
583 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
584 |
+
return f"Prediction: {labels[scores.argmax()]}"
|
585 |
+
|
586 |
+
def clean_ocr_text(text):
|
587 |
+
text = text.strip()
|
588 |
+
text = re.sub(r'\s+', ' ', text)
|
589 |
+
text = re.sub(r'[^\x00-\x7F]+', '', text)
|
590 |
+
return text
|
591 |
+
|
592 |
+
def classify_sentiment(text_input, reddit_url, image):
|
593 |
+
if reddit_url.strip():
|
594 |
+
text = fetch_reddit_text(reddit_url)
|
595 |
+
elif image is not None:
|
596 |
+
try:
|
597 |
+
img_array = np.array(image)
|
598 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
599 |
+
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
|
600 |
+
text = pytesseract.image_to_string(thresh)
|
601 |
+
text = clean_ocr_text(text)
|
602 |
+
except Exception as e:
|
603 |
+
return f"[!] OCR failed: {str(e)}"
|
604 |
+
elif text_input.strip():
|
605 |
+
text = text_input
|
606 |
+
else:
|
607 |
+
return "[!] Please enter some text, upload an image, or provide a Reddit URL."
|
608 |
+
|
609 |
+
if text.lower().startswith("error") or "Unable to extract" in text:
|
610 |
+
return f"[!] {text}"
|
611 |
+
|
612 |
+
# Truncate to first 400 words
|
613 |
+
text = ' '.join(text.split()[:400])
|
614 |
+
|
615 |
+
try:
|
616 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
617 |
+
with torch.no_grad():
|
618 |
+
outputs = model(**inputs)
|
619 |
+
scores = softmax(outputs.logits.cpu().numpy()[0])
|
620 |
+
labels = ['Negative', 'Positive']
|
621 |
+
return f"Prediction: {labels[scores.argmax()]}"
|
622 |
+
except Exception as e:
|
623 |
+
return f"[!] Prediction error: {str(e)}"
|
624 |
+
|
625 |
+
def analyze_subreddit(subreddit_name):
|
626 |
+
try:
|
627 |
+
subreddit = reddit.subreddit(subreddit_name)
|
628 |
+
posts = list(subreddit.hot(limit=20))
|
629 |
+
|
630 |
+
sentiments = []
|
631 |
+
titles = []
|
632 |
+
|
633 |
+
for post in posts:
|
634 |
+
text = f"{post.title}\n{post.selftext}"
|
635 |
+
text = ' '.join(text.split()[:400])
|
636 |
+
try:
|
637 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
638 |
+
with torch.no_grad():
|
639 |
+
outputs = model(**inputs)
|
640 |
+
scores = softmax(outputs.logits.cpu().numpy()[0])
|
641 |
+
labels = ['Negative', 'Positive']
|
642 |
+
sentiment = labels[scores.argmax()]
|
643 |
+
except:
|
644 |
+
sentiment = "Fallback"
|
645 |
+
sentiments.append(sentiment)
|
646 |
+
titles.append(post.title)
|
647 |
+
|
648 |
+
df = pd.DataFrame({"Title": titles, "Sentiment": sentiments})
|
649 |
+
sentiment_counts = df["Sentiment"].value_counts()
|
650 |
+
|
651 |
+
fig, ax = plt.subplots()
|
652 |
+
sentiment_counts.plot(kind="bar", ax=ax)
|
653 |
+
ax.set_title(f"Sentiment Distribution in r/{subreddit_name}")
|
654 |
+
ax.set_xlabel("Sentiment")
|
655 |
+
ax.set_ylabel("Number of Posts")
|
656 |
+
|
657 |
+
return fig, df
|
658 |
+
except Exception as e:
|
659 |
+
return f"[!] Error: {str(e)}", pd.DataFrame()
|
660 |
+
|
661 |
+
main_interface = gr.Interface(
|
662 |
+
fn=classify_sentiment,
|
663 |
+
inputs=[
|
664 |
+
gr.Textbox(label="Text Input", placeholder="Paste content here...", lines=4),
|
665 |
+
gr.Textbox(label="Reddit Post URL", placeholder="Optional", lines=1),
|
666 |
+
gr.Image(label="Upload Image (optional)", type="pil")
|
667 |
+
],
|
668 |
+
outputs="text",
|
669 |
+
title="Sentiment Analyzer",
|
670 |
+
description="π Analyze sentiment of any text, Reddit post URL, or image content."
|
671 |
+
)
|
672 |
+
|
673 |
+
subreddit_interface = gr.Interface(
|
674 |
+
fn=analyze_subreddit,
|
675 |
+
inputs=gr.Textbox(label="Subreddit Name", placeholder="e.g., AskReddit"),
|
676 |
+
outputs=[
|
677 |
+
gr.Plot(label="Sentiment Distribution"),
|
678 |
+
gr.Dataframe(label="Post Titles and Sentiments", wrap=True)
|
679 |
+
],
|
680 |
+
title="Subreddit Sentiment Analysis",
|
681 |
+
description="π Analyze top 20 posts of any subreddit."
|
682 |
+
)
|
683 |
+
|
684 |
+
demo = gr.TabbedInterface(
|
685 |
+
interface_list=[main_interface, subreddit_interface],
|
686 |
+
tab_names=["General Sentiment Analysis", "Subreddit Analysis"]
|
687 |
+
)
|
688 |
+
|
689 |
+
demo.launch()
|
690 |
|
691 |
|
692 |
|