Update app.py
Browse files
app.py
CHANGED
@@ -535,6 +535,7 @@ demo = gr.TabbedInterface(
|
|
535 |
|
536 |
demo.launch()
|
537 |
'''
|
|
|
538 |
import gradio as gr
|
539 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
540 |
import torch
|
@@ -690,6 +691,177 @@ demo = gr.TabbedInterface(
|
|
690 |
)
|
691 |
|
692 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
|
694 |
|
695 |
|
|
|
535 |
|
536 |
demo.launch()
|
537 |
'''
|
538 |
+
'''
|
539 |
import gradio as gr
|
540 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
541 |
import torch
|
|
|
691 |
)
|
692 |
|
693 |
demo.launch()
|
694 |
+
'''
|
695 |
+
import gradio as gr
|
696 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
697 |
+
import torch
|
698 |
+
from scipy.special import softmax
|
699 |
+
import praw
|
700 |
+
import os
|
701 |
+
import pytesseract
|
702 |
+
from PIL import Image
|
703 |
+
import cv2
|
704 |
+
import numpy as np
|
705 |
+
import re
|
706 |
+
import matplotlib.pyplot as plt
|
707 |
+
import pandas as pd
|
708 |
+
from langdetect import detect
|
709 |
+
|
710 |
+
# Install tesseract OCR (only runs once in Hugging Face Spaces)
|
711 |
+
os.system("apt-get update && apt-get install -y tesseract-ocr")
|
712 |
+
|
713 |
+
# Load main lightweight model (English)
|
714 |
+
main_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
715 |
+
model = AutoModelForSequenceClassification.from_pretrained(main_model_name)
|
716 |
+
tokenizer = AutoTokenizer.from_pretrained(main_model_name)
|
717 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
718 |
+
model.to(device)
|
719 |
+
|
720 |
+
# Load fallback multilingual model
|
721 |
+
multi_model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
722 |
+
multi_tokenizer = AutoTokenizer.from_pretrained(multi_model_name)
|
723 |
+
multi_model = AutoModelForSequenceClassification.from_pretrained(multi_model_name).to(device)
|
724 |
+
|
725 |
+
# Reddit API setup
|
726 |
+
reddit = praw.Reddit(
|
727 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
728 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
729 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui-finalyear2025-shrish191")
|
730 |
+
)
|
731 |
+
|
732 |
+
def fetch_reddit_text(reddit_url):
|
733 |
+
try:
|
734 |
+
submission = reddit.submission(url=reddit_url)
|
735 |
+
return f"{submission.title}\n\n{submission.selftext}"
|
736 |
+
except Exception as e:
|
737 |
+
return f"Error fetching Reddit post: {str(e)}"
|
738 |
+
|
739 |
+
def multilingual_classifier(text):
|
740 |
+
encoded_input = multi_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
741 |
+
with torch.no_grad():
|
742 |
+
output = multi_model(**encoded_input)
|
743 |
+
scores = softmax(output.logits.cpu().numpy()[0])
|
744 |
+
stars = np.argmax(scores) + 1
|
745 |
+
|
746 |
+
if stars in [1, 2]:
|
747 |
+
return "Prediction: Negative"
|
748 |
+
elif stars == 3:
|
749 |
+
return "Prediction: Neutral"
|
750 |
+
else:
|
751 |
+
return "Prediction: Positive"
|
752 |
+
|
753 |
+
def clean_ocr_text(text):
|
754 |
+
text = text.strip()
|
755 |
+
text = re.sub(r'\s+', ' ', text)
|
756 |
+
text = re.sub(r'[^\x00-\x7F]+', '', text)
|
757 |
+
return text
|
758 |
+
|
759 |
+
def classify_sentiment(text_input, reddit_url, image):
|
760 |
+
if reddit_url.strip():
|
761 |
+
text = fetch_reddit_text(reddit_url)
|
762 |
+
elif image is not None:
|
763 |
+
try:
|
764 |
+
img_array = np.array(image)
|
765 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
766 |
+
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
|
767 |
+
text = pytesseract.image_to_string(thresh)
|
768 |
+
text = clean_ocr_text(text)
|
769 |
+
except Exception as e:
|
770 |
+
return f"[!] OCR failed: {str(e)}"
|
771 |
+
elif text_input.strip():
|
772 |
+
text = text_input
|
773 |
+
else:
|
774 |
+
return "[!] Please enter some text, upload an image, or provide a Reddit URL."
|
775 |
+
|
776 |
+
if text.lower().startswith("error") or "Unable to extract" in text:
|
777 |
+
return f"[!] {text}"
|
778 |
+
|
779 |
+
# Truncate to first 400 words
|
780 |
+
text = ' '.join(text.split()[:400])
|
781 |
+
|
782 |
+
try:
|
783 |
+
lang = detect(text)
|
784 |
+
if lang == 'en':
|
785 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
786 |
+
with torch.no_grad():
|
787 |
+
outputs = model(**inputs)
|
788 |
+
scores = softmax(outputs.logits.cpu().numpy()[0])
|
789 |
+
labels = ['Negative', 'Positive']
|
790 |
+
return f"Prediction: {labels[scores.argmax()]}"
|
791 |
+
else:
|
792 |
+
return multilingual_classifier(text)
|
793 |
+
except Exception as e:
|
794 |
+
return f"[!] Prediction error: {str(e)}"
|
795 |
+
|
796 |
+
def analyze_subreddit(subreddit_name):
|
797 |
+
try:
|
798 |
+
subreddit = reddit.subreddit(subreddit_name)
|
799 |
+
posts = list(subreddit.hot(limit=20))
|
800 |
+
|
801 |
+
sentiments = []
|
802 |
+
titles = []
|
803 |
+
|
804 |
+
for post in posts:
|
805 |
+
text = f"{post.title}\n{post.selftext}"
|
806 |
+
text = ' '.join(text.split()[:400])
|
807 |
+
try:
|
808 |
+
lang = detect(text)
|
809 |
+
if lang == 'en':
|
810 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
811 |
+
with torch.no_grad():
|
812 |
+
outputs = model(**inputs)
|
813 |
+
scores = softmax(outputs.logits.cpu().numpy()[0])
|
814 |
+
labels = ['Negative', 'Positive']
|
815 |
+
sentiment = labels[scores.argmax()]
|
816 |
+
else:
|
817 |
+
sentiment = multilingual_classifier(text).split(": ")[-1]
|
818 |
+
except:
|
819 |
+
sentiment = "Error"
|
820 |
+
sentiments.append(sentiment)
|
821 |
+
titles.append(post.title)
|
822 |
+
|
823 |
+
df = pd.DataFrame({"Title": titles, "Sentiment": sentiments})
|
824 |
+
sentiment_counts = df["Sentiment"].value_counts()
|
825 |
+
|
826 |
+
fig, ax = plt.subplots()
|
827 |
+
sentiment_counts.plot(kind="bar", ax=ax)
|
828 |
+
ax.set_title(f"Sentiment Distribution in r/{subreddit_name}")
|
829 |
+
ax.set_xlabel("Sentiment")
|
830 |
+
ax.set_ylabel("Number of Posts")
|
831 |
+
|
832 |
+
return fig, df
|
833 |
+
except Exception as e:
|
834 |
+
return f"[!] Error: {str(e)}", pd.DataFrame()
|
835 |
+
|
836 |
+
main_interface = gr.Interface(
|
837 |
+
fn=classify_sentiment,
|
838 |
+
inputs=[
|
839 |
+
gr.Textbox(label="Text Input", placeholder="Paste content here...", lines=4),
|
840 |
+
gr.Textbox(label="Reddit Post URL", placeholder="Optional", lines=1),
|
841 |
+
gr.Image(label="Upload Image (optional)", type="pil")
|
842 |
+
],
|
843 |
+
outputs="text",
|
844 |
+
title="Sentiment Analyzer",
|
845 |
+
description="π Analyze sentiment of any text, Reddit post URL, or image content."
|
846 |
+
)
|
847 |
+
|
848 |
+
subreddit_interface = gr.Interface(
|
849 |
+
fn=analyze_subreddit,
|
850 |
+
inputs=gr.Textbox(label="Subreddit Name", placeholder="e.g., AskReddit"),
|
851 |
+
outputs=[
|
852 |
+
gr.Plot(label="Sentiment Distribution"),
|
853 |
+
gr.Dataframe(label="Post Titles and Sentiments", wrap=True)
|
854 |
+
],
|
855 |
+
title="Subreddit Sentiment Analysis",
|
856 |
+
description="π Analyze top 20 posts of any subreddit."
|
857 |
+
)
|
858 |
+
|
859 |
+
demo = gr.TabbedInterface(
|
860 |
+
interface_list=[main_interface, subreddit_interface],
|
861 |
+
tab_names=["General Sentiment Analysis", "Subreddit Analysis"]
|
862 |
+
)
|
863 |
+
|
864 |
+
demo.launch()
|
865 |
|
866 |
|
867 |
|