Update app.py
Browse files
app.py
CHANGED
@@ -692,6 +692,7 @@ demo = gr.TabbedInterface(
|
|
692 |
|
693 |
demo.launch()
|
694 |
'''
|
|
|
695 |
import gradio as gr
|
696 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
697 |
import torch
|
@@ -858,6 +859,189 @@ demo = gr.TabbedInterface(
|
|
858 |
)
|
859 |
|
860 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
861 |
|
862 |
|
863 |
|
|
|
692 |
|
693 |
demo.launch()
|
694 |
'''
|
695 |
+
'''
|
696 |
import gradio as gr
|
697 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
698 |
import torch
|
|
|
859 |
)
|
860 |
|
861 |
demo.launch()
|
862 |
+
'''
|
863 |
+
import gradio as gr
|
864 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
865 |
+
import torch
|
866 |
+
from scipy.special import softmax
|
867 |
+
import praw
|
868 |
+
import os
|
869 |
+
import pytesseract
|
870 |
+
from PIL import Image
|
871 |
+
import cv2
|
872 |
+
import numpy as np
|
873 |
+
import re
|
874 |
+
import matplotlib.pyplot as plt
|
875 |
+
import pandas as pd
|
876 |
+
from langdetect import detect
|
877 |
+
|
878 |
+
# Install tesseract OCR (only runs once in Hugging Face Spaces)
|
879 |
+
os.system("apt-get update && apt-get install -y tesseract-ocr")
|
880 |
+
|
881 |
+
# Load main lightweight model (English)
|
882 |
+
main_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
883 |
+
model = AutoModelForSequenceClassification.from_pretrained(main_model_name)
|
884 |
+
tokenizer = AutoTokenizer.from_pretrained(main_model_name)
|
885 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
886 |
+
model.to(device)
|
887 |
+
|
888 |
+
# Load multilingual fallback model (global languages)
|
889 |
+
multi_model_name = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
890 |
+
multi_tokenizer = AutoTokenizer.from_pretrained(multi_model_name)
|
891 |
+
multi_model = AutoModelForSequenceClassification.from_pretrained(multi_model_name).to(device)
|
892 |
+
multi_labels = ['Negative', 'Neutral', 'Positive']
|
893 |
+
|
894 |
+
# Load Hinglish/Hindi fallback model
|
895 |
+
hinglish_model_name = "iisc-dsi/hinglish-sentiment-model"
|
896 |
+
hinglish_tokenizer = AutoTokenizer.from_pretrained(hinglish_model_name)
|
897 |
+
hinglish_model = AutoModelForSequenceClassification.from_pretrained(hinglish_model_name).to(device)
|
898 |
+
hinglish_labels = ['Negative', 'Neutral', 'Positive']
|
899 |
+
|
900 |
+
# Reddit API setup
|
901 |
+
reddit = praw.Reddit(
|
902 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
903 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
904 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui-finalyear2025-shrish191")
|
905 |
+
)
|
906 |
+
|
907 |
+
def fetch_reddit_text(reddit_url):
|
908 |
+
try:
|
909 |
+
submission = reddit.submission(url=reddit_url)
|
910 |
+
return f"{submission.title}\n\n{submission.selftext}"
|
911 |
+
except Exception as e:
|
912 |
+
return f"Error fetching Reddit post: {str(e)}"
|
913 |
+
|
914 |
+
def multilingual_classifier(text):
|
915 |
+
encoded_input = multi_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
916 |
+
with torch.no_grad():
|
917 |
+
output = multi_model(**encoded_input)
|
918 |
+
scores = softmax(output.logits.cpu().numpy()[0])
|
919 |
+
return f"Prediction: {multi_labels[np.argmax(scores)]}"
|
920 |
+
|
921 |
+
def hinglish_classifier(text):
|
922 |
+
encoded_input = hinglish_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
923 |
+
with torch.no_grad():
|
924 |
+
output = hinglish_model(**encoded_input)
|
925 |
+
scores = softmax(output.logits.cpu().numpy()[0])
|
926 |
+
return f"Prediction: {hinglish_labels[np.argmax(scores)]}"
|
927 |
+
|
928 |
+
def clean_ocr_text(text):
|
929 |
+
text = text.strip()
|
930 |
+
text = re.sub(r'\s+', ' ', text)
|
931 |
+
text = re.sub(r'[^\x00-\x7F]+', '', text)
|
932 |
+
return text
|
933 |
+
|
934 |
+
def classify_sentiment(text_input, reddit_url, image):
|
935 |
+
if reddit_url.strip():
|
936 |
+
text = fetch_reddit_text(reddit_url)
|
937 |
+
elif image is not None:
|
938 |
+
try:
|
939 |
+
img_array = np.array(image)
|
940 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
941 |
+
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
|
942 |
+
text = pytesseract.image_to_string(thresh)
|
943 |
+
text = clean_ocr_text(text)
|
944 |
+
except Exception as e:
|
945 |
+
return f"[!] OCR failed: {str(e)}"
|
946 |
+
elif text_input.strip():
|
947 |
+
text = text_input
|
948 |
+
else:
|
949 |
+
return "[!] Please enter some text, upload an image, or provide a Reddit URL."
|
950 |
+
|
951 |
+
if text.lower().startswith("error") or "Unable to extract" in text:
|
952 |
+
return f"[!] {text}"
|
953 |
+
|
954 |
+
text = ' '.join(text.split()[:400])
|
955 |
+
|
956 |
+
try:
|
957 |
+
lang = detect(text)
|
958 |
+
if lang == 'en':
|
959 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
960 |
+
with torch.no_grad():
|
961 |
+
outputs = model(**inputs)
|
962 |
+
scores = softmax(outputs.logits.cpu().numpy()[0])
|
963 |
+
labels = ['Negative', 'Positive']
|
964 |
+
label = labels[scores.argmax()]
|
965 |
+
elif lang == 'hi':
|
966 |
+
label = hinglish_classifier(text).split(": ")[-1]
|
967 |
+
else:
|
968 |
+
label = multilingual_classifier(text).split(": ")[-1]
|
969 |
+
|
970 |
+
return f"π Detected Language: {lang.upper()} | Prediction: {label}"
|
971 |
+
except Exception as e:
|
972 |
+
return f"[!] Prediction error: {str(e)}"
|
973 |
+
|
974 |
+
def analyze_subreddit(subreddit_name):
|
975 |
+
try:
|
976 |
+
subreddit = reddit.subreddit(subreddit_name)
|
977 |
+
posts = list(subreddit.hot(limit=20))
|
978 |
+
|
979 |
+
sentiments = []
|
980 |
+
titles = []
|
981 |
+
|
982 |
+
for post in posts:
|
983 |
+
text = f"{post.title}\n{post.selftext}"
|
984 |
+
text = ' '.join(text.split()[:400])
|
985 |
+
try:
|
986 |
+
lang = detect(text)
|
987 |
+
if lang == 'en':
|
988 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
989 |
+
with torch.no_grad():
|
990 |
+
outputs = model(**inputs)
|
991 |
+
scores = softmax(outputs.logits.cpu().numpy()[0])
|
992 |
+
labels = ['Negative', 'Positive']
|
993 |
+
sentiment = labels[scores.argmax()]
|
994 |
+
elif lang == 'hi':
|
995 |
+
sentiment = hinglish_classifier(text).split(": ")[-1]
|
996 |
+
else:
|
997 |
+
sentiment = multilingual_classifier(text).split(": ")[-1]
|
998 |
+
except:
|
999 |
+
sentiment = "Error"
|
1000 |
+
sentiments.append(sentiment)
|
1001 |
+
titles.append(post.title)
|
1002 |
+
|
1003 |
+
df = pd.DataFrame({"Title": titles, "Sentiment": sentiments})
|
1004 |
+
sentiment_counts = df["Sentiment"].value_counts()
|
1005 |
+
|
1006 |
+
fig, ax = plt.subplots()
|
1007 |
+
sentiment_counts.plot(kind="bar", ax=ax)
|
1008 |
+
ax.set_title(f"Sentiment Distribution in r/{subreddit_name}")
|
1009 |
+
ax.set_xlabel("Sentiment")
|
1010 |
+
ax.set_ylabel("Number of Posts")
|
1011 |
+
|
1012 |
+
return fig, df
|
1013 |
+
except Exception as e:
|
1014 |
+
return f"[!] Error: {str(e)}", pd.DataFrame()
|
1015 |
+
|
1016 |
+
main_interface = gr.Interface(
|
1017 |
+
fn=classify_sentiment,
|
1018 |
+
inputs=[
|
1019 |
+
gr.Textbox(label="Text Input", placeholder="Paste content here...", lines=4),
|
1020 |
+
gr.Textbox(label="Reddit Post URL", placeholder="Optional", lines=1),
|
1021 |
+
gr.Image(label="Upload Image (optional)", type="pil")
|
1022 |
+
],
|
1023 |
+
outputs="text",
|
1024 |
+
title="Sentiment Analyzer",
|
1025 |
+
description="π Analyze sentiment of any text, Reddit post URL, or image content."
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
subreddit_interface = gr.Interface(
|
1029 |
+
fn=analyze_subreddit,
|
1030 |
+
inputs=gr.Textbox(label="Subreddit Name", placeholder="e.g., AskReddit"),
|
1031 |
+
outputs=[
|
1032 |
+
gr.Plot(label="Sentiment Distribution"),
|
1033 |
+
gr.Dataframe(label="Post Titles and Sentiments", wrap=True)
|
1034 |
+
],
|
1035 |
+
title="Subreddit Sentiment Analysis",
|
1036 |
+
description="π Analyze top 20 posts of any subreddit."
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
demo = gr.TabbedInterface(
|
1040 |
+
interface_list=[main_interface, subreddit_interface],
|
1041 |
+
tab_names=["General Sentiment Analysis", "Subreddit Analysis"]
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
demo.launch()
|
1045 |
|
1046 |
|
1047 |
|