|
'''import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
|
|
# Load model and tokenizer from your HF model repo |
|
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") |
|
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") |
|
|
|
def classify_sentiment(text): |
|
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) |
|
predictions = model(inputs).logits |
|
label = tf.argmax(predictions, axis=1).numpy()[0] |
|
labels = {0: "Negative", 1: "Neutral", 2: "Positive"} |
|
return labels[label] |
|
|
|
demo = gr.Interface(fn=classify_sentiment, |
|
inputs=gr.Textbox(placeholder="Enter a tweet..."), |
|
outputs="text", |
|
title="Tweet Sentiment Classifier", |
|
description="Multilingual BERT-based Sentiment Analysis") |
|
|
|
demo.launch() |
|
''' |
|
''' |
|
import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
|
|
# Load model and tokenizer from Hugging Face |
|
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") |
|
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") |
|
|
|
# Manually define the correct mapping |
|
LABELS = { |
|
0: "Neutral", |
|
1: "Positive", |
|
2: "Negative" |
|
} |
|
|
|
def classify_sentiment(text): |
|
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) |
|
outputs = model(inputs) |
|
probs = tf.nn.softmax(outputs.logits, axis=1) |
|
pred_label = tf.argmax(probs, axis=1).numpy()[0] |
|
confidence = float(tf.reduce_max(probs).numpy()) |
|
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" |
|
|
|
demo = gr.Interface( |
|
fn=classify_sentiment, |
|
inputs=gr.Textbox(placeholder="Type your tweet here..."), |
|
outputs="text", |
|
title="Sentiment Analysis on Tweets", |
|
description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative." |
|
) |
|
|
|
demo.launch() |
|
''' |
|
''' |
|
import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
import snscrape.modules.twitter as sntwitter |
|
import praw |
|
import os |
|
|
|
# Load model and tokenizer |
|
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") |
|
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") |
|
|
|
# Label Mapping |
|
LABELS = { |
|
0: "Neutral", |
|
1: "Positive", |
|
2: "Negative" |
|
} |
|
|
|
# Reddit API setup with environment variables |
|
reddit = praw.Reddit( |
|
client_id=os.getenv("REDDIT_CLIENT_ID"), |
|
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), |
|
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script") |
|
) |
|
|
|
# Tweet text extractor |
|
def fetch_tweet_text(tweet_url): |
|
try: |
|
tweet_id = tweet_url.split("/")[-1] |
|
for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items(): |
|
return tweet.content |
|
return "Unable to extract tweet content." |
|
except Exception as e: |
|
return f"Error fetching tweet: {str(e)}" |
|
|
|
# Reddit post extractor |
|
def fetch_reddit_text(reddit_url): |
|
try: |
|
submission = reddit.submission(url=reddit_url) |
|
return f"{submission.title}\n\n{submission.selftext}" |
|
except Exception as e: |
|
return f"Error fetching Reddit post: {str(e)}" |
|
|
|
# Sentiment classification logic |
|
def classify_sentiment(text_input, tweet_url, reddit_url): |
|
if reddit_url.strip(): |
|
text = fetch_reddit_text(reddit_url) |
|
elif tweet_url.strip(): |
|
text = fetch_tweet_text(tweet_url) |
|
elif text_input.strip(): |
|
text = text_input |
|
else: |
|
return "[!] Please enter text or a post URL." |
|
|
|
if text.lower().startswith("error") or "Unable to extract" in text: |
|
return f"[!] Error: {text}" |
|
|
|
try: |
|
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) |
|
outputs = model(inputs) |
|
probs = tf.nn.softmax(outputs.logits, axis=1) |
|
pred_label = tf.argmax(probs, axis=1).numpy()[0] |
|
confidence = float(tf.reduce_max(probs).numpy()) |
|
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})" |
|
except Exception as e: |
|
return f"[!] Prediction error: {str(e)}" |
|
|
|
# Gradio Interface |
|
demo = gr.Interface( |
|
fn=classify_sentiment, |
|
inputs=[ |
|
gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."), |
|
gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"), |
|
gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)") |
|
], |
|
outputs="text", |
|
title="Multilingual Sentiment Analysis", |
|
description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!" |
|
) |
|
|
|
demo.launch() |
|
''' |
|
|
|
|
|
''' |
|
import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
import praw |
|
import os |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
from scipy.special import softmax |
|
|
|
|
|
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") |
|
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") |
|
|
|
LABELS = { |
|
0: "Neutral", |
|
1: "Positive", |
|
2: "Negative" |
|
} |
|
|
|
|
|
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" |
|
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) |
|
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) |
|
|
|
# Reddit API |
|
reddit = praw.Reddit( |
|
client_id=os.getenv("REDDIT_CLIENT_ID"), |
|
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), |
|
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui") |
|
) |
|
|
|
def fetch_reddit_text(reddit_url): |
|
try: |
|
submission = reddit.submission(url=reddit_url) |
|
return f"{submission.title}\n\n{submission.selftext}" |
|
except Exception as e: |
|
return f"Error fetching Reddit post: {str(e)}" |
|
|
|
|
|
def fallback_classifier(text): |
|
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True) |
|
with torch.no_grad(): |
|
output = fallback_model(**encoded_input) |
|
scores = softmax(output.logits.numpy()[0]) |
|
labels = ['Negative', 'Neutral', 'Positive'] |
|
return f"Prediction: {labels[scores.argmax()]}" |
|
|
|
def classify_sentiment(text_input, reddit_url): |
|
if reddit_url.strip(): |
|
text = fetch_reddit_text(reddit_url) |
|
elif text_input.strip(): |
|
text = text_input |
|
else: |
|
return "[!] Please enter some text or a Reddit post URL." |
|
|
|
if text.lower().startswith("error") or "Unable to extract" in text: |
|
return f"[!] {text}" |
|
|
|
try: |
|
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) |
|
outputs = model(inputs) |
|
probs = tf.nn.softmax(outputs.logits, axis=1) |
|
confidence = float(tf.reduce_max(probs).numpy()) |
|
pred_label = tf.argmax(probs, axis=1).numpy()[0] |
|
|
|
if confidence < 0.5: |
|
return fallback_classifier(text) |
|
|
|
return f"Prediction: {LABELS[pred_label]}" |
|
except Exception as e: |
|
return f"[!] Prediction error: {str(e)}" |
|
|
|
# Gradio interface |
|
demo = gr.Interface( |
|
fn=classify_sentiment, |
|
inputs=[ |
|
gr.Textbox( |
|
label="Text Input (can be tweet or any content)", |
|
placeholder="Paste tweet or type any content here...", |
|
lines=4 |
|
), |
|
gr.Textbox( |
|
label="Reddit Post URL", |
|
placeholder="Paste a Reddit post URL (optional)", |
|
lines=1 |
|
), |
|
], |
|
outputs="text", |
|
title="Sentiment Analyzer", |
|
description="π Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\nπ‘ Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually." |
|
) |
|
|
|
demo.launch() |
|
''' |
|
''' |
|
import gradio as gr |
|
from transformers import TFBertForSequenceClassification, BertTokenizer |
|
import tensorflow as tf |
|
import praw |
|
import os |
|
import pytesseract |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
import re |
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
from scipy.special import softmax |
|
|
|
# Install tesseract OCR (only runs once in Hugging Face Spaces) |
|
os.system("apt-get update && apt-get install -y tesseract-ocr") |
|
|
|
# Load main model |
|
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert") |
|
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert") |
|
|
|
LABELS = { |
|
0: "Neutral", |
|
1: "Positive", |
|
2: "Negative" |
|
} |
|
|
|
# Load fallback model |
|
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment" |
|
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name) |
|
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name) |
|
|
|
# Reddit API setup |
|
reddit = praw.Reddit( |
|
client_id=os.getenv("REDDIT_CLIENT_ID"), |
|
client_secret=os.getenv("REDDIT_CLIENT_SECRET"), |
|
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui") |
|
) |
|
|
|
def fetch_reddit_text(reddit_url): |
|
try: |
|
submission = reddit.submission(url=reddit_url) |
|
return f"{submission.title}\n\n{submission.selftext}" |
|
except Exception as e: |
|
return f"Error fetching Reddit post: {str(e)}" |
|
|
|
def fallback_classifier(text): |
|
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True) |
|
with torch.no_grad(): |
|
output = fallback_model(**encoded_input) |
|
scores = softmax(output.logits.numpy()[0]) |
|
labels = ['Negative', 'Neutral', 'Positive'] |
|
return f"Prediction: {labels[scores.argmax()]}" |
|
|
|
def clean_ocr_text(text): |
|
text = text.strip() |
|
text = re.sub(r'\s+', ' ', text) # Replace multiple spaces and newlines |
|
text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters |
|
return text |
|
|
|
def classify_sentiment(text_input, reddit_url, image): |
|
if reddit_url.strip(): |
|
text = fetch_reddit_text(reddit_url) |
|
elif image is not None: |
|
try: |
|
img_array = np.array(image) |
|
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) |
|
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) |
|
text = pytesseract.image_to_string(thresh) |
|
text = clean_ocr_text(text) |
|
except Exception as e: |
|
return f"[!] OCR failed: {str(e)}" |
|
elif text_input.strip(): |
|
text = text_input |
|
else: |
|
return "[!] Please enter some text, upload an image, or provide a Reddit URL." |
|
|
|
if text.lower().startswith("error") or "Unable to extract" in text: |
|
return f"[!] {text}" |
|
|
|
try: |
|
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True) |
|
outputs = model(inputs) |
|
probs = tf.nn.softmax(outputs.logits, axis=1) |
|
confidence = float(tf.reduce_max(probs).numpy()) |
|
pred_label = tf.argmax(probs, axis=1).numpy()[0] |
|
|
|
if confidence < 0.5: |
|
return fallback_classifier(text) |
|
|
|
return f"Prediction: {LABELS[pred_label]}" |
|
except Exception as e: |
|
return f"[!] Prediction error: {str(e)}" |
|
|
|
# Gradio interface |
|
demo = gr.Interface( |
|
fn=classify_sentiment, |
|
inputs=[ |
|
gr.Textbox( |
|
label="Text Input (can be tweet or any content)", |
|
placeholder="Paste tweet or type any content here...", |
|
lines=4 |
|
), |
|
gr.Textbox( |
|
label="Reddit Post URL", |
|
placeholder="Paste a Reddit post URL (optional)", |
|
lines=1 |
|
), |
|
gr.Image( |
|
label="Upload Image (optional)", |
|
type="pil" |
|
) |
|
], |
|
outputs="text", |
|
title="Sentiment Analyzer", |
|
description="π Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\nπ‘ Tweet URLs are not supported. Please paste tweet content or screenshot instead." |
|
) |
|
|
|
demo.launch() |
|
''' |
|
|
|
import gradio as gr |
|
import praw |
|
import pandas as pd |
|
import plotly.graph_objs as go |
|
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification |
|
from tensorflow.nn import softmax |
|
import numpy as np |
|
|
|
|
|
model_name = "shrish191/sentiment-bert" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
def classify_sentiment(text): |
|
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True) |
|
outputs = model(inputs) |
|
scores = softmax(outputs.logits, axis=1).numpy()[0] |
|
labels = ['Negative', 'Neutral', 'Positive'] |
|
sentiment = labels[np.argmax(scores)] |
|
confidence = round(float(np.max(scores)) * 100, 2) |
|
return sentiment, confidence |
|
|
|
|
|
reddit = praw.Reddit( |
|
client_id="YOUR_CLIENT_ID", |
|
client_secret="YOUR_CLIENT_SECRET", |
|
user_agent="YOUR_USER_AGENT" |
|
) |
|
|
|
def analyze_subreddit(subreddit_name, num_posts): |
|
posts = [] |
|
for submission in reddit.subreddit(subreddit_name).hot(limit=num_posts): |
|
if not submission.stickied: |
|
sentiment, confidence = classify_sentiment(submission.title) |
|
posts.append({"title": submission.title, "sentiment": sentiment, "confidence": confidence}) |
|
|
|
df = pd.DataFrame(posts) |
|
sentiment_counts = df['sentiment'].value_counts().reindex(['Positive', 'Neutral', 'Negative'], fill_value=0) |
|
total = sentiment_counts.sum() |
|
sentiment_percentages = (sentiment_counts / total * 100).round(2) |
|
|
|
fig = go.Figure(data=[ |
|
go.Pie(labels=sentiment_percentages.index, values=sentiment_percentages.values, hole=.4) |
|
]) |
|
fig.update_layout(title="Sentiment Distribution in r/{} ({} posts)".format(subreddit_name, num_posts)) |
|
|
|
return df, fig |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Reddit Subreddit Sentiment Dashboard") |
|
subreddit_input = gr.Textbox(label="Enter Subreddit (without r/)", placeholder="e.g., technology") |
|
num_posts_input = gr.Slider(10, 100, step=10, value=30, label="Number of Posts to Analyze") |
|
analyze_button = gr.Button("Analyze") |
|
sentiment_table = gr.Dataframe(label="Post Sentiments") |
|
sentiment_chart = gr.Plot(label="Sentiment Pie Chart") |
|
|
|
analyze_button.click( |
|
analyze_subreddit, |
|
inputs=[subreddit_input, num_posts_input], |
|
outputs=[sentiment_table, sentiment_chart] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|
|
|
|
|
|
|
|
|