machinelearning147's picture
new file: app.py
28c3712
raw
history blame contribute delete
959 Bytes
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import torch
import gradio as gr
# Load model and processor
processor = AutoProcessor.from_pretrained("google/paligemma-3b")
model = PaliGemmaForConditionalGeneration.from_pretrained(
"google/paligemma-3b",
torch_dtype=torch.float16,
device_map="auto"
)
def ecommerce_assistant(image, question):
prompt = f"Question: {question}\nAnswer:"
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda", torch.float16)
outputs = model.generate(**inputs, max_new_tokens=50)
return processor.batch_decode(outputs, skip_special_tokens=True)[0]
demo = gr.Interface(
fn=ecommerce_assistant,
inputs=["image", "text"],
outputs="text",
title="πŸ›οΈ E-commerce Visual Assistant",
description="Upload a product photo and ask questions like 'What brand is this?' or 'Can I buy it online?'"
)
demo.launch()