Spaces:
Runtime error
Runtime error
Xingqian Xu
commited on
Commit
·
2fbcf51
0
Parent(s):
New app first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +36 -0
- .gitignore +9 -0
- README.md +14 -0
- app.py +1083 -0
- assets/demo/mcg_example/e0i0.jpg +0 -0
- assets/demo/mcg_example/e0i1.jpg +0 -0
- assets/demo/mcg_example/e0i2.jpg +0 -0
- assets/demo/misc/mask_inst1.gif +3 -0
- assets/demo/misc/mask_inst2.gif +3 -0
- assets/demo/misc/mask_inst3.gif +3 -0
- assets/demo/misc/noimage.jpg +0 -0
- assets/demo/reg_example/benz.jpg +0 -0
- assets/demo/reg_example/boy_and_girl.jpg +0 -0
- assets/demo/reg_example/church.jpg +0 -0
- assets/demo/reg_example/firework.jpg +0 -0
- assets/demo/reg_example/ghibli.jpg +0 -0
- assets/demo/reg_example/horse.jpg +0 -0
- assets/demo/reg_example/house_by_lake.jpg +0 -0
- assets/demo/reg_example/matisse.jpg +0 -0
- assets/demo/reg_example/night_light.jpg +0 -0
- assets/demo/reg_example/noimage.jpg +0 -0
- assets/demo/reg_example/paris.jpg +0 -0
- assets/demo/reg_example/penguin.jpg +0 -0
- assets/demo/reg_example/san_diego.jpg +0 -0
- assets/demo/reg_example/scream.jpg +0 -0
- assets/demo/reg_example/space.jpg +0 -0
- assets/demo/reg_example/tiger.jpg +0 -0
- assets/demo/reg_example/train.jpg +0 -0
- assets/demo/reg_example/vermeer.jpg +0 -0
- assets/demo/tcg_example/e0i0.jpg +0 -0
- assets/demo/tcg_example/e0i1.jpg +0 -0
- assets/demo/tcg_example/e1i0.jpg +0 -0
- assets/demo/tcg_example/e1i1.jpg +0 -0
- assets/demo/tcg_example/e2i0.jpg +0 -0
- assets/figures/share_instruction.png +0 -0
- configs/model/autokl.yaml +23 -0
- configs/model/clip.yaml +13 -0
- configs/model/openai_unet.yaml +96 -0
- configs/model/optimus.yaml +102 -0
- configs/model/vd.yaml +29 -0
- cusomized_gradio_blocks.py +271 -0
- gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/captions.json +1 -0
- gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/tmp0m_lns_xtd2zm06b.png +0 -0
- gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/tmp9xugbhobbnp5ds0r.png +0 -0
- gradio_cached_examples/12/log.csv +2 -0
- lib/__init__.py +0 -0
- lib/cfg_helper.py +612 -0
- lib/cfg_holder.py +28 -0
- lib/log_service.py +166 -0
- lib/model_zoo/__init__.py +4 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.vscode/
|
3 |
+
src/
|
4 |
+
data/
|
5 |
+
data
|
6 |
+
log/
|
7 |
+
log
|
8 |
+
pretrained/
|
9 |
+
pretrained
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Versatile Diffusion
|
3 |
+
emoji:
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.9.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
python_version: 3.8.5
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,1083 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
################################################################################
|
2 |
+
# Copyright (C) 2023 Xingqian Xu - All Rights Reserved #
|
3 |
+
# #
|
4 |
+
# Please visit Versatile Diffusion's arXiv paper for more details, link at #
|
5 |
+
# arxiv.org/abs/2211.08332 #
|
6 |
+
# #
|
7 |
+
# Besides, this work is also inspired by many established techniques including:#
|
8 |
+
# Denoising Diffusion Probablistic Model; Denoising Diffusion Implicit Model; #
|
9 |
+
# Latent Diffusion Model; Stable Diffusion; Stable Diffusion - Img2Img; Stable #
|
10 |
+
# Diffusion - Variation; ImageMixer; DreamBooth; Stable Diffusion - Lora; More #
|
11 |
+
# Control for Free; Prompt-to-Prompt; #
|
12 |
+
# #
|
13 |
+
################################################################################
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
import os
|
17 |
+
import PIL
|
18 |
+
from PIL import Image
|
19 |
+
from pathlib import Path
|
20 |
+
import numpy as np
|
21 |
+
import numpy.random as npr
|
22 |
+
from contextlib import nullcontext
|
23 |
+
import types
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torchvision.transforms as tvtrans
|
27 |
+
from lib.cfg_helper import model_cfg_bank
|
28 |
+
from lib.model_zoo import get_model
|
29 |
+
from cusomized_gradio_blocks import create_myexamples, customized_as_example, customized_postprocess
|
30 |
+
|
31 |
+
n_sample_image = 2
|
32 |
+
n_sample_text = 4
|
33 |
+
cache_examples = True
|
34 |
+
|
35 |
+
from lib.model_zoo.ddim import DDIMSampler
|
36 |
+
|
37 |
+
##########
|
38 |
+
# helper #
|
39 |
+
##########
|
40 |
+
|
41 |
+
def highlight_print(info):
|
42 |
+
print('')
|
43 |
+
print(''.join(['#']*(len(info)+4)))
|
44 |
+
print('# '+info+' #')
|
45 |
+
print(''.join(['#']*(len(info)+4)))
|
46 |
+
print('')
|
47 |
+
|
48 |
+
def decompose(x, q=20, niter=100):
|
49 |
+
x_mean = x.mean(-1, keepdim=True)
|
50 |
+
x_input = x - x_mean
|
51 |
+
u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
|
52 |
+
ss = torch.stack([torch.diag(si) for si in s])
|
53 |
+
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
|
54 |
+
x_remain = x_input - x_lowrank
|
55 |
+
return u, s, v, x_mean, x_remain
|
56 |
+
|
57 |
+
class adjust_rank(object):
|
58 |
+
def __init__(self, max_drop_rank=[1, 5], q=20):
|
59 |
+
self.max_semantic_drop_rank = max_drop_rank[0]
|
60 |
+
self.max_style_drop_rank = max_drop_rank[1]
|
61 |
+
self.q = q
|
62 |
+
|
63 |
+
def t2y0_semf_wrapper(t0, y00, t1, y01):
|
64 |
+
return lambda t: (np.exp((t-0.5)*2)-t0)/(t1-t0)*(y01-y00)+y00
|
65 |
+
t0, y00 = np.exp((0 -0.5)*2), -self.max_semantic_drop_rank
|
66 |
+
t1, y01 = np.exp((0.5-0.5)*2), 1
|
67 |
+
self.t2y0_semf = t2y0_semf_wrapper(t0, y00, t1, y01)
|
68 |
+
|
69 |
+
def x2y_semf_wrapper(x0, x1, y1):
|
70 |
+
return lambda x, y0: (x-x0)/(x1-x0)*(y1-y0)+y0
|
71 |
+
x0 = 0
|
72 |
+
x1, y1 = self.max_semantic_drop_rank+1, 1
|
73 |
+
self.x2y_semf = x2y_semf_wrapper(x0, x1, y1)
|
74 |
+
|
75 |
+
def t2y0_styf_wrapper(t0, y00, t1, y01):
|
76 |
+
return lambda t: (np.exp((t-0.5)*2)-t0)/(t1-t0)*(y01-y00)+y00
|
77 |
+
t0, y00 = np.exp((1 -0.5)*2), -(q-self.max_style_drop_rank)
|
78 |
+
t1, y01 = np.exp((0.5-0.5)*2), 1
|
79 |
+
self.t2y0_styf = t2y0_styf_wrapper(t0, y00, t1, y01)
|
80 |
+
|
81 |
+
def x2y_styf_wrapper(x0, x1, y1):
|
82 |
+
return lambda x, y0: (x-x0)/(x1-x0)*(y1-y0)+y0
|
83 |
+
x0 = q-1
|
84 |
+
x1, y1 = self.max_style_drop_rank-1, 1
|
85 |
+
self.x2y_styf = x2y_styf_wrapper(x0, x1, y1)
|
86 |
+
|
87 |
+
def __call__(self, x, lvl):
|
88 |
+
if lvl == 0.5:
|
89 |
+
return x
|
90 |
+
|
91 |
+
if x.dtype == torch.float16:
|
92 |
+
fp16 = True
|
93 |
+
x = x.float()
|
94 |
+
else:
|
95 |
+
fp16 = False
|
96 |
+
std_save = x.std(axis=[-2, -1])
|
97 |
+
|
98 |
+
u, s, v, x_mean, x_remain = decompose(x, q=self.q)
|
99 |
+
|
100 |
+
if lvl < 0.5:
|
101 |
+
assert lvl>=0
|
102 |
+
for xi in range(0, self.max_semantic_drop_rank+1):
|
103 |
+
y0 = self.t2y0_semf(lvl)
|
104 |
+
yi = self.x2y_semf(xi, y0)
|
105 |
+
yi = 0 if yi<0 else yi
|
106 |
+
s[:, xi] *= yi
|
107 |
+
|
108 |
+
elif lvl > 0.5:
|
109 |
+
assert lvl <= 1
|
110 |
+
for xi in range(self.max_style_drop_rank, self.q):
|
111 |
+
y0 = self.t2y0_styf(lvl)
|
112 |
+
yi = self.x2y_styf(xi, y0)
|
113 |
+
yi = 0 if yi<0 else yi
|
114 |
+
s[:, xi] *= yi
|
115 |
+
x_remain = 0
|
116 |
+
|
117 |
+
ss = torch.stack([torch.diag(si) for si in s])
|
118 |
+
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
|
119 |
+
x_new = x_lowrank + x_mean + x_remain
|
120 |
+
|
121 |
+
std_new = x_new.std(axis=[-2, -1])
|
122 |
+
x_new = x_new / std_new * std_save
|
123 |
+
|
124 |
+
if fp16:
|
125 |
+
x_new = x_new.half()
|
126 |
+
|
127 |
+
return x_new
|
128 |
+
|
129 |
+
def remove_duplicate_word(tx):
|
130 |
+
def combine_words(input, length):
|
131 |
+
combined_inputs = []
|
132 |
+
if len(splitted_input)>1:
|
133 |
+
for i in range(len(input)-1):
|
134 |
+
combined_inputs.append(input[i]+" "+last_word_of(splitted_input[i+1],length)) #add the last word of the right-neighbour (overlapping) sequence (before it has expanded), which is the next word in the original sentence
|
135 |
+
return combined_inputs, length+1
|
136 |
+
|
137 |
+
def remove_duplicates(input, length):
|
138 |
+
bool_broke=False #this means we didn't find any duplicates here
|
139 |
+
for i in range(len(input) - length):
|
140 |
+
if input[i]==input[i + length]: #found a duplicate piece of sentence!
|
141 |
+
for j in range(0, length): #remove the overlapping sequences in reverse order
|
142 |
+
del input[i + length - j]
|
143 |
+
bool_broke = True
|
144 |
+
break #break the for loop as the loop length does not matches the length of splitted_input anymore as we removed elements
|
145 |
+
if bool_broke:
|
146 |
+
return remove_duplicates(input, length) #if we found a duplicate, look for another duplicate of the same length
|
147 |
+
return input
|
148 |
+
|
149 |
+
def last_word_of(input, length):
|
150 |
+
splitted = input.split(" ")
|
151 |
+
if len(splitted)==0:
|
152 |
+
return input
|
153 |
+
else:
|
154 |
+
return splitted[length-1]
|
155 |
+
|
156 |
+
def split_and_puncsplit(text):
|
157 |
+
tx = text.split(" ")
|
158 |
+
txnew = []
|
159 |
+
for txi in tx:
|
160 |
+
txqueue=[]
|
161 |
+
while True:
|
162 |
+
if txi[0] in '([{':
|
163 |
+
txqueue.extend([txi[:1], '<puncnext>'])
|
164 |
+
txi = txi[1:]
|
165 |
+
if len(txi) == 0:
|
166 |
+
break
|
167 |
+
else:
|
168 |
+
break
|
169 |
+
txnew += txqueue
|
170 |
+
txstack=[]
|
171 |
+
if len(txi) == 0:
|
172 |
+
continue
|
173 |
+
while True:
|
174 |
+
if txi[-1] in '?!.,:;}])':
|
175 |
+
txstack = ['<puncnext>', txi[-1:]] + txstack
|
176 |
+
txi = txi[:-1]
|
177 |
+
if len(txi) == 0:
|
178 |
+
break
|
179 |
+
else:
|
180 |
+
break
|
181 |
+
if len(txi) != 0:
|
182 |
+
txnew += [txi]
|
183 |
+
txnew += txstack
|
184 |
+
return txnew
|
185 |
+
|
186 |
+
if tx == '':
|
187 |
+
return tx
|
188 |
+
|
189 |
+
splitted_input = split_and_puncsplit(tx)
|
190 |
+
word_length = 1
|
191 |
+
intermediate_output = False
|
192 |
+
while len(splitted_input)>1:
|
193 |
+
splitted_input = remove_duplicates(splitted_input, word_length)
|
194 |
+
if len(splitted_input)>1:
|
195 |
+
splitted_input, word_length = combine_words(splitted_input, word_length)
|
196 |
+
if intermediate_output:
|
197 |
+
print(splitted_input)
|
198 |
+
print(word_length)
|
199 |
+
output = splitted_input[0]
|
200 |
+
output = output.replace(' <puncnext> ', '')
|
201 |
+
return output
|
202 |
+
|
203 |
+
def get_instruction(mode):
|
204 |
+
t2i_instruction = ["Generate image from text prompt."]
|
205 |
+
i2i_instruction = ["Generate image conditioned on reference image.",]
|
206 |
+
i2t_instruction = ["Generate text from reference image. "]
|
207 |
+
t2t_instruction = ["Generate text from reference text prompt. "]
|
208 |
+
dcg_instruction = ["Generate image conditioned on both text and image."]
|
209 |
+
tcg_instruction = ["Generate image conditioned on text and up to two images."]
|
210 |
+
mcg_instruction = ["Generate image from multiple contexts."]
|
211 |
+
|
212 |
+
if mode == "Text-to-Image":
|
213 |
+
return '\n'.join(t2i_instruction)
|
214 |
+
elif mode == "Image-Variation":
|
215 |
+
return '\n'.join(i2i_instruction)
|
216 |
+
elif mode == "Image-to-Text":
|
217 |
+
return '\n'.join(i2t_instruction)
|
218 |
+
elif mode == "Text-Variation":
|
219 |
+
return '\n'.join(t2t_instruction)
|
220 |
+
elif mode == "Dual-Context":
|
221 |
+
return '\n'.join(dcg_instruction)
|
222 |
+
elif mode == "Triple-Context":
|
223 |
+
return '\n'.join(tcg_instruction)
|
224 |
+
elif mode == "Multi-Context":
|
225 |
+
return '\n'.join(mcg_instruction)
|
226 |
+
else:
|
227 |
+
assert False
|
228 |
+
|
229 |
+
########
|
230 |
+
# main #
|
231 |
+
########
|
232 |
+
class vd_dummy(object):
|
233 |
+
def __init__(self, *args, **kwarg):
|
234 |
+
self.which = 'Vdummy'
|
235 |
+
def inference_t2i(self, *args, **kwarg): pass
|
236 |
+
def inference_i2i(self, *args, **kwarg): pass
|
237 |
+
def inference_i2t(self, *args, **kwarg): pass
|
238 |
+
def inference_t2t(self, *args, **kwarg): pass
|
239 |
+
def inference_dcg(self, *args, **kwarg): pass
|
240 |
+
def inference_tcg(self, *args, **kwarg): pass
|
241 |
+
def inference_mcg(self, *args, **kwarg):
|
242 |
+
return None, None
|
243 |
+
|
244 |
+
class vd_inference(object):
|
245 |
+
def __init__(self, fp16=False, which='v2.0'):
|
246 |
+
highlight_print(which)
|
247 |
+
self.which = which
|
248 |
+
|
249 |
+
if self.which == 'v1.0':
|
250 |
+
cfgm = model_cfg_bank()('vd_four_flow_v1-0')
|
251 |
+
else:
|
252 |
+
assert False, 'Model type not supported'
|
253 |
+
net = get_model()(cfgm)
|
254 |
+
|
255 |
+
if self.which == 'v1.0':
|
256 |
+
sd = torch.load('pretrained/vd-four-flow-v1-0.pth', map_location='cpu')
|
257 |
+
net.load_state_dict(sd, strict=False)
|
258 |
+
|
259 |
+
if fp16:
|
260 |
+
highlight_print('Running in FP16')
|
261 |
+
if self.which == 'v1.0':
|
262 |
+
net.ctx['text'].fp16 = True
|
263 |
+
net.ctx['image'].fp16 = True
|
264 |
+
net = net.half()
|
265 |
+
self.dtype = torch.float16
|
266 |
+
else:
|
267 |
+
self.dtype = torch.float32
|
268 |
+
|
269 |
+
self.use_cuda = torch.cuda.is_available()
|
270 |
+
if self.use_cuda:
|
271 |
+
net.to('cuda')
|
272 |
+
self.net = net
|
273 |
+
self.sampler = DDIMSampler(net)
|
274 |
+
|
275 |
+
self.output_dim = [512, 512]
|
276 |
+
self.n_sample_image = n_sample_image
|
277 |
+
self.n_sample_text = n_sample_text
|
278 |
+
self.ddim_steps = 50
|
279 |
+
self.ddim_eta = 0.0
|
280 |
+
self.scale_textto = 7.5
|
281 |
+
self.image_latent_dim = 4
|
282 |
+
self.text_latent_dim = 768
|
283 |
+
self.text_temperature = 1
|
284 |
+
|
285 |
+
if which == 'v1.0':
|
286 |
+
self.adjust_rank_f = adjust_rank(max_drop_rank=[1, 5], q=20)
|
287 |
+
self.scale_imgto = 7.5
|
288 |
+
self.disentanglement_noglobal = True
|
289 |
+
|
290 |
+
def inference_t2i(self, text, seed):
|
291 |
+
n_samples = self.n_sample_image
|
292 |
+
scale = self.scale_textto
|
293 |
+
sampler = self.sampler
|
294 |
+
h, w = self.output_dim
|
295 |
+
u = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
296 |
+
c = self.net.ctx_encode([text], which='text').repeat(n_samples, 1, 1)
|
297 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
298 |
+
np.random.seed(seed)
|
299 |
+
torch.manual_seed(seed + 100)
|
300 |
+
x, _ = sampler.sample(
|
301 |
+
steps=self.ddim_steps,
|
302 |
+
x_info={'type':'image'},
|
303 |
+
c_info={'type':'text', 'conditioning':c, 'unconditional_conditioning':u,
|
304 |
+
'unconditional_guidance_scale':scale},
|
305 |
+
shape=shape,
|
306 |
+
verbose=False,
|
307 |
+
eta=self.ddim_eta)
|
308 |
+
im = self.net.vae_decode(x, which='image')
|
309 |
+
im = [tvtrans.ToPILImage()(i) for i in im]
|
310 |
+
return im
|
311 |
+
|
312 |
+
def inference_i2i(self, im, fid_lvl, fcs_lvl, clr_adj, seed):
|
313 |
+
n_samples = self.n_sample_image
|
314 |
+
scale = self.scale_imgto
|
315 |
+
sampler = self.sampler
|
316 |
+
h, w = self.output_dim
|
317 |
+
device = self.net.device
|
318 |
+
|
319 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
320 |
+
im = im.resize([w, h], resample=BICUBIC)
|
321 |
+
|
322 |
+
if fid_lvl == 1:
|
323 |
+
return [im]*n_samples
|
324 |
+
|
325 |
+
cx = tvtrans.ToTensor()(im)[None].to(device).to(self.dtype)
|
326 |
+
|
327 |
+
c = self.net.ctx_encode(cx, which='image')
|
328 |
+
if self.disentanglement_noglobal:
|
329 |
+
c_glb = c[:, 0:1]
|
330 |
+
c_loc = c[:, 1: ]
|
331 |
+
c_loc = self.adjust_rank_f(c_loc, fcs_lvl)
|
332 |
+
c = torch.cat([c_glb, c_loc], dim=1).repeat(n_samples, 1, 1)
|
333 |
+
else:
|
334 |
+
c = self.adjust_rank_f(c, fcs_lvl).repeat(n_samples, 1, 1)
|
335 |
+
u = torch.zeros_like(c)
|
336 |
+
|
337 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
338 |
+
np.random.seed(seed)
|
339 |
+
torch.manual_seed(seed + 100)
|
340 |
+
if fid_lvl!=0:
|
341 |
+
x0 = self.net.vae_encode(cx, which='image').repeat(n_samples, 1, 1, 1)
|
342 |
+
step = int(self.ddim_steps * (1-fid_lvl))
|
343 |
+
x, _ = sampler.sample(
|
344 |
+
steps=self.ddim_steps,
|
345 |
+
x_info={'type':'image', 'x0':x0, 'x0_forward_timesteps':step},
|
346 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
347 |
+
'unconditional_guidance_scale':scale},
|
348 |
+
shape=shape,
|
349 |
+
verbose=False,
|
350 |
+
eta=self.ddim_eta)
|
351 |
+
else:
|
352 |
+
x, _ = sampler.sample(
|
353 |
+
steps=self.ddim_steps,
|
354 |
+
x_info={'type':'image',},
|
355 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
356 |
+
'unconditional_guidance_scale':scale},
|
357 |
+
shape=shape,
|
358 |
+
verbose=False,
|
359 |
+
eta=self.ddim_eta)
|
360 |
+
|
361 |
+
imout = self.net.vae_decode(x, which='image')
|
362 |
+
|
363 |
+
if clr_adj == 'Simple':
|
364 |
+
cx_mean = cx.view(3, -1).mean(-1)[:, None, None]
|
365 |
+
cx_std = cx.view(3, -1).std(-1)[:, None, None]
|
366 |
+
imout_mean = [imouti.view(3, -1).mean(-1)[:, None, None] for imouti in imout]
|
367 |
+
imout_std = [imouti.view(3, -1).std(-1)[:, None, None] for imouti in imout]
|
368 |
+
imout = [(ii-mi)/si*cx_std+cx_mean for ii, mi, si in zip(imout, imout_mean, imout_std)]
|
369 |
+
imout = [torch.clamp(ii, 0, 1) for ii in imout]
|
370 |
+
|
371 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
372 |
+
return imout
|
373 |
+
|
374 |
+
def inference_i2t(self, im, seed):
|
375 |
+
n_samples = self.n_sample_text
|
376 |
+
scale = self.scale_imgto
|
377 |
+
sampler = self.sampler
|
378 |
+
h, w = self.output_dim
|
379 |
+
device = self.net.device
|
380 |
+
|
381 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
382 |
+
im = im.resize([w, h], resample=BICUBIC)
|
383 |
+
|
384 |
+
cx = tvtrans.ToTensor()(im)[None].to(device)
|
385 |
+
c = self.net.ctx_encode(cx, which='image').repeat(n_samples, 1, 1)
|
386 |
+
u = self.net.ctx_encode(torch.zeros_like(cx), which='image').repeat(n_samples, 1, 1)
|
387 |
+
|
388 |
+
shape = [n_samples, self.text_latent_dim]
|
389 |
+
np.random.seed(seed)
|
390 |
+
torch.manual_seed(seed + 100)
|
391 |
+
x, _ = sampler.sample(
|
392 |
+
steps=self.ddim_steps,
|
393 |
+
x_info={'type':'text',},
|
394 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
395 |
+
'unconditional_guidance_scale':scale},
|
396 |
+
shape=shape,
|
397 |
+
verbose=False,
|
398 |
+
eta=self.ddim_eta)
|
399 |
+
tx = self.net.vae_decode(x, which='text', temperature=self.text_temperature)
|
400 |
+
tx = [remove_duplicate_word(txi) for txi in tx]
|
401 |
+
tx_combined = '\n'.join(tx)
|
402 |
+
return tx_combined
|
403 |
+
|
404 |
+
def inference_t2t(self, text, seed):
|
405 |
+
n_samples = self.n_sample_text
|
406 |
+
scale = self.scale_textto
|
407 |
+
sampler = self.sampler
|
408 |
+
u = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
409 |
+
c = self.net.ctx_encode([text], which='text').repeat(n_samples, 1, 1)
|
410 |
+
shape = [n_samples, self.text_latent_dim]
|
411 |
+
np.random.seed(seed)
|
412 |
+
torch.manual_seed(seed + 100)
|
413 |
+
x, _ = sampler.sample(
|
414 |
+
steps=self.ddim_steps,
|
415 |
+
x_info={'type':'text',},
|
416 |
+
c_info={'type':'text', 'conditioning':c, 'unconditional_conditioning':u,
|
417 |
+
'unconditional_guidance_scale':scale},
|
418 |
+
shape=shape,
|
419 |
+
verbose=False,
|
420 |
+
eta=self.ddim_eta)
|
421 |
+
tx = self.net.vae_decode(x, which='text', temperature=self.text_temperature)
|
422 |
+
tx = [remove_duplicate_word(txi) for txi in tx]
|
423 |
+
tx_combined = '\n'.join(tx)
|
424 |
+
return tx_combined
|
425 |
+
|
426 |
+
def inference_dcg(self, imctx, fcs_lvl, textctx, textstrength, seed):
|
427 |
+
n_samples = self.n_sample_image
|
428 |
+
sampler = self.sampler
|
429 |
+
h, w = self.output_dim
|
430 |
+
device = self.net.device
|
431 |
+
|
432 |
+
c_info_list = []
|
433 |
+
|
434 |
+
if (textctx is not None) and (textctx != "") and (textstrength != 0):
|
435 |
+
ut = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
436 |
+
ct = self.net.ctx_encode([textctx], which='text').repeat(n_samples, 1, 1)
|
437 |
+
scale = self.scale_imgto*(1-textstrength) + self.scale_textto*textstrength
|
438 |
+
|
439 |
+
c_info_list.append({
|
440 |
+
'type':'text',
|
441 |
+
'conditioning':ct,
|
442 |
+
'unconditional_conditioning':ut,
|
443 |
+
'unconditional_guidance_scale':scale,
|
444 |
+
'ratio': textstrength, })
|
445 |
+
else:
|
446 |
+
scale = self.scale_imgto
|
447 |
+
textstrength = 0
|
448 |
+
|
449 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
450 |
+
cx = imctx.resize([w, h], resample=BICUBIC)
|
451 |
+
cx = tvtrans.ToTensor()(cx)[None].to(device).to(self.dtype)
|
452 |
+
ci = self.net.ctx_encode(cx, which='image')
|
453 |
+
|
454 |
+
if self.disentanglement_noglobal:
|
455 |
+
ci_glb = ci[:, 0:1]
|
456 |
+
ci_loc = ci[:, 1: ]
|
457 |
+
ci_loc = self.adjust_rank_f(ci_loc, fcs_lvl)
|
458 |
+
ci = torch.cat([ci_glb, ci_loc], dim=1).repeat(n_samples, 1, 1)
|
459 |
+
else:
|
460 |
+
ci = self.adjust_rank_f(ci, fcs_lvl).repeat(n_samples, 1, 1)
|
461 |
+
|
462 |
+
c_info_list.append({
|
463 |
+
'type':'image',
|
464 |
+
'conditioning':ci,
|
465 |
+
'unconditional_conditioning':torch.zeros_like(ci),
|
466 |
+
'unconditional_guidance_scale':scale,
|
467 |
+
'ratio': (1-textstrength), })
|
468 |
+
|
469 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
470 |
+
np.random.seed(seed)
|
471 |
+
torch.manual_seed(seed + 100)
|
472 |
+
x, _ = sampler.sample_multicontext(
|
473 |
+
steps=self.ddim_steps,
|
474 |
+
x_info={'type':'image',},
|
475 |
+
c_info_list=c_info_list,
|
476 |
+
shape=shape,
|
477 |
+
verbose=False,
|
478 |
+
eta=self.ddim_eta)
|
479 |
+
|
480 |
+
imout = self.net.vae_decode(x, which='image')
|
481 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
482 |
+
return imout
|
483 |
+
|
484 |
+
def inference_tcg(self, *args):
|
485 |
+
args_imag = list(args[0:10]) + [None, None, None, None, None]*2
|
486 |
+
args_rest = args[10:]
|
487 |
+
imin, imout = self.inference_mcg(*args_imag, *args_rest)
|
488 |
+
return imin, imout
|
489 |
+
|
490 |
+
def inference_mcg(self, *args):
|
491 |
+
imctx = [args[0:5], args[5:10], args[10:15], args[15:20]]
|
492 |
+
textctx, textstrength, seed = args[20:]
|
493 |
+
|
494 |
+
n_samples = self.n_sample_image
|
495 |
+
sampler = self.sampler
|
496 |
+
h, w = self.output_dim
|
497 |
+
device = self.net.device
|
498 |
+
|
499 |
+
c_info_list = []
|
500 |
+
|
501 |
+
if (textctx is not None) and (textctx != "") and (textstrength != 0):
|
502 |
+
ut = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
503 |
+
ct = self.net.ctx_encode([textctx], which='text').repeat(n_samples, 1, 1)
|
504 |
+
scale = self.scale_imgto*(1-textstrength) + self.scale_textto*textstrength
|
505 |
+
|
506 |
+
c_info_list.append({
|
507 |
+
'type':'text',
|
508 |
+
'conditioning':ct,
|
509 |
+
'unconditional_conditioning':ut,
|
510 |
+
'unconditional_guidance_scale':scale,
|
511 |
+
'ratio': textstrength, })
|
512 |
+
else:
|
513 |
+
scale = self.scale_imgto
|
514 |
+
textstrength = 0
|
515 |
+
|
516 |
+
input_save = []
|
517 |
+
imc = []
|
518 |
+
for im, imm, strength, fcs_lvl, use_mask in imctx:
|
519 |
+
if (im is None) and (imm is None):
|
520 |
+
continue
|
521 |
+
BILINEAR = PIL.Image.Resampling.BILINEAR
|
522 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
523 |
+
if use_mask:
|
524 |
+
cx = imm['image'].resize([w, h], resample=BICUBIC)
|
525 |
+
cx = tvtrans.ToTensor()(cx)[None].to(self.dtype).to(device)
|
526 |
+
m = imm['mask'].resize([w, h], resample=BILINEAR)
|
527 |
+
m = tvtrans.ToTensor()(m)[None, 0:1].to(self.dtype).to(device)
|
528 |
+
m = (1-m)
|
529 |
+
cx_show = cx*m
|
530 |
+
ci = self.net.ctx_encode(cx, which='image', masks=m)
|
531 |
+
else:
|
532 |
+
cx = im.resize([w, h], resample=BICUBIC)
|
533 |
+
cx = tvtrans.ToTensor()(cx)[None].to(self.dtype).to(device)
|
534 |
+
ci = self.net.ctx_encode(cx, which='image')
|
535 |
+
cx_show = cx
|
536 |
+
|
537 |
+
input_save.append(tvtrans.ToPILImage()(cx_show[0]))
|
538 |
+
|
539 |
+
if self.disentanglement_noglobal:
|
540 |
+
ci_glb = ci[:, 0:1]
|
541 |
+
ci_loc = ci[:, 1: ]
|
542 |
+
ci_loc = self.adjust_rank_f(ci_loc, fcs_lvl)
|
543 |
+
ci = torch.cat([ci_glb, ci_loc], dim=1).repeat(n_samples, 1, 1)
|
544 |
+
else:
|
545 |
+
ci = self.adjust_rank_f(ci, fcs_lvl).repeat(n_samples, 1, 1)
|
546 |
+
imc.append(ci * strength)
|
547 |
+
|
548 |
+
cis = torch.cat(imc, dim=1)
|
549 |
+
c_info_list.append({
|
550 |
+
'type':'image',
|
551 |
+
'conditioning':cis,
|
552 |
+
'unconditional_conditioning':torch.zeros_like(cis),
|
553 |
+
'unconditional_guidance_scale':scale,
|
554 |
+
'ratio': (1-textstrength), })
|
555 |
+
|
556 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
557 |
+
np.random.seed(seed)
|
558 |
+
torch.manual_seed(seed + 100)
|
559 |
+
x, _ = sampler.sample_multicontext(
|
560 |
+
steps=self.ddim_steps,
|
561 |
+
x_info={'type':'image',},
|
562 |
+
c_info_list=c_info_list,
|
563 |
+
shape=shape,
|
564 |
+
verbose=False,
|
565 |
+
eta=self.ddim_eta)
|
566 |
+
|
567 |
+
imout = self.net.vae_decode(x, which='image')
|
568 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
569 |
+
return input_save, imout
|
570 |
+
|
571 |
+
# vd_inference = vd_dummy()
|
572 |
+
vd_inference = vd_inference(which='v1.0', fp16=True)
|
573 |
+
|
574 |
+
#################
|
575 |
+
# sub interface #
|
576 |
+
#################
|
577 |
+
|
578 |
+
def t2i_interface(with_example=False):
|
579 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Text-to-Image") + '</p>')
|
580 |
+
with gr.Row():
|
581 |
+
with gr.Column():
|
582 |
+
text = gr.Textbox(lines=4, placeholder="Input prompt...", label='Text Input')
|
583 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
584 |
+
button = gr.Button("Run")
|
585 |
+
with gr.Column():
|
586 |
+
img_output = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
587 |
+
|
588 |
+
button.click(
|
589 |
+
vd_inference.inference_t2i,
|
590 |
+
inputs=[text, seed],
|
591 |
+
outputs=[img_output])
|
592 |
+
|
593 |
+
if with_example:
|
594 |
+
gr.Examples(
|
595 |
+
label='Examples',
|
596 |
+
examples=get_example('Text-to-Image'),
|
597 |
+
fn=vd_inference.inference_t2i,
|
598 |
+
inputs=[text, seed],
|
599 |
+
outputs=[img_output],
|
600 |
+
cache_examples=cache_examples),
|
601 |
+
|
602 |
+
def i2i_interface(with_example=False):
|
603 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Image-Variation") + '</p>')
|
604 |
+
with gr.Row():
|
605 |
+
with gr.Column():
|
606 |
+
img_input = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
607 |
+
sim_flag = gr.Checkbox(label='Show Detail Controls')
|
608 |
+
with gr.Row():
|
609 |
+
fid_lvl = gr.Slider(label="Fidelity (Dislike -- Same)", minimum=0, maximum=1, value=0, step=0.02, visible=False)
|
610 |
+
fcs_lvl = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02, visible=False)
|
611 |
+
clr_adj = gr.Radio(label="Color Adjustment", choices=["None", "Simple"], value='Simple', visible=False)
|
612 |
+
explain = gr.HTML('<p id=myinst>  Fidelity: How likely the output image looks like the referece image (0-dislike (default), 1-same).</p>'+
|
613 |
+
'<p id=myinst>  Focus: What the output image should focused on (0-semantic, 0.5-balanced (default), 1-style).</p>',
|
614 |
+
visible=False)
|
615 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
616 |
+
button = gr.Button("Run")
|
617 |
+
with gr.Column():
|
618 |
+
img_output = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
619 |
+
|
620 |
+
sim_flag.change(
|
621 |
+
fn=lambda x: {
|
622 |
+
explain : gr.update(visible=x),
|
623 |
+
fid_lvl : gr.update(visible=x),
|
624 |
+
fcs_lvl : gr.update(visible=x),
|
625 |
+
clr_adj : gr.update(visible=x), },
|
626 |
+
inputs=sim_flag,
|
627 |
+
outputs=[explain, fid_lvl, fcs_lvl, clr_adj, seed],)
|
628 |
+
|
629 |
+
button.click(
|
630 |
+
vd_inference.inference_i2i,
|
631 |
+
inputs=[img_input, fid_lvl, fcs_lvl, clr_adj, seed],
|
632 |
+
outputs=[img_output])
|
633 |
+
|
634 |
+
if with_example:
|
635 |
+
gr.Examples(
|
636 |
+
label='Examples',
|
637 |
+
examples=get_example('Image-Variation'),
|
638 |
+
fn=vd_inference.inference_i2i,
|
639 |
+
inputs=[img_input, fid_lvl, fcs_lvl, clr_adj, seed],
|
640 |
+
outputs=[img_output],
|
641 |
+
cache_examples=cache_examples),
|
642 |
+
|
643 |
+
def i2t_interface(with_example=False):
|
644 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Image-to-Text") + '</p>')
|
645 |
+
with gr.Row():
|
646 |
+
with gr.Column():
|
647 |
+
img_input = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
648 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
649 |
+
button = gr.Button("Run")
|
650 |
+
with gr.Column():
|
651 |
+
txt_output = gr.Textbox(lines=4, label='Text Result')
|
652 |
+
|
653 |
+
button.click(
|
654 |
+
vd_inference.inference_i2t,
|
655 |
+
inputs=[img_input, seed],
|
656 |
+
outputs=[txt_output])
|
657 |
+
|
658 |
+
if with_example:
|
659 |
+
gr.Examples(
|
660 |
+
label='Examples',
|
661 |
+
examples=get_example('Image-to-Text'),
|
662 |
+
fn=vd_inference.inference_i2t,
|
663 |
+
inputs=[img_input, seed],
|
664 |
+
outputs=[txt_output],
|
665 |
+
cache_examples=cache_examples),
|
666 |
+
|
667 |
+
def t2t_interface(with_example=False):
|
668 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Text-Variation") + '</p>')
|
669 |
+
with gr.Row():
|
670 |
+
with gr.Column():
|
671 |
+
text = gr.Textbox(lines=4, placeholder="Input prompt...", label='Text Input')
|
672 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
673 |
+
button = gr.Button("Run")
|
674 |
+
with gr.Column():
|
675 |
+
txt_output = gr.Textbox(lines=4, label='Text Result')
|
676 |
+
|
677 |
+
button.click(
|
678 |
+
vd_inference.inference_t2t,
|
679 |
+
inputs=[text, seed],
|
680 |
+
outputs=[txt_output])
|
681 |
+
|
682 |
+
if with_example:
|
683 |
+
gr.Examples(
|
684 |
+
label='Examples',
|
685 |
+
examples=get_example('Text-Variation'),
|
686 |
+
fn=vd_inference.inference_t2t,
|
687 |
+
inputs=[text, seed],
|
688 |
+
outputs=[txt_output],
|
689 |
+
cache_examples=cache_examples, )
|
690 |
+
|
691 |
+
class image_mimage_swap(object):
|
692 |
+
def __init__(self, block0, block1):
|
693 |
+
self.block0 = block0
|
694 |
+
self.block1 = block1
|
695 |
+
self.which_update = 'both'
|
696 |
+
|
697 |
+
def __call__(self, x0, x1, flag):
|
698 |
+
if self.which_update == 'both':
|
699 |
+
return self.update_both(x0, x1, flag)
|
700 |
+
elif self.which_update == 'visible':
|
701 |
+
return self.update_visible(x0, x1, flag)
|
702 |
+
elif self.which_update == 'visible_oneoff':
|
703 |
+
return self.update_visible_oneoff(x0, x1, flag)
|
704 |
+
else:
|
705 |
+
assert False
|
706 |
+
|
707 |
+
def update_both(self, x0, x1, flag):
|
708 |
+
if flag:
|
709 |
+
ug0 = gr.update(visible=False)
|
710 |
+
if x0 is None:
|
711 |
+
ug1 = gr.update(value=None, visible=True)
|
712 |
+
else:
|
713 |
+
if (x1 is not None) and ('mask' in x1):
|
714 |
+
value1 = {'image':x0, 'mask':x1['mask']}
|
715 |
+
else:
|
716 |
+
value1 = {'image':x0, 'mask':None}
|
717 |
+
ug1 = gr.update(value=value1, visible=True)
|
718 |
+
else:
|
719 |
+
if (x1 is not None) and ('image' in x1):
|
720 |
+
value0 = x1['image']
|
721 |
+
else:
|
722 |
+
value0 = None
|
723 |
+
ug0 = gr.update(value=value0, visible=True)
|
724 |
+
ug1 = gr.update(visible=False)
|
725 |
+
return {
|
726 |
+
self.block0 : ug0,
|
727 |
+
self.block1 : ug1,}
|
728 |
+
|
729 |
+
def update_visible(self, x0, x1, flag):
|
730 |
+
return {
|
731 |
+
self.block0 : gr.update(visible=not flag),
|
732 |
+
self.block1 : gr.update(visible=flag), }
|
733 |
+
|
734 |
+
def update_visible_oneoff(self, x0, x1, flag):
|
735 |
+
self.which_update = 'both'
|
736 |
+
return {
|
737 |
+
self.block0 : gr.update(visible=not flag),
|
738 |
+
self.block1 : gr.update(visible=flag), }
|
739 |
+
|
740 |
+
class example_visible_only_hack(object):
|
741 |
+
def __init__(self, checkbox_list, functor_list):
|
742 |
+
self.checkbox_list = checkbox_list
|
743 |
+
self.functor_list = functor_list
|
744 |
+
|
745 |
+
def __call__(self, *args):
|
746 |
+
for bi, fi, vi in zip(self.checkbox_list, self.functor_list, args):
|
747 |
+
if bi.value != vi:
|
748 |
+
fi.which_update = 'visible_oneoff'
|
749 |
+
|
750 |
+
def dcg_interface(with_example=False):
|
751 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Dual-Context") + '</p>')
|
752 |
+
with gr.Row():
|
753 |
+
input_session = []
|
754 |
+
with gr.Column():
|
755 |
+
img = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
756 |
+
fcs = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
757 |
+
gr.HTML('<p id=myinst>  Focus: Focus on what aspect of the image? (0-semantic, 0.5-balanced (default), 1-style).</p>')
|
758 |
+
|
759 |
+
text = gr.Textbox(lines=2, placeholder="Input prompt...", label='Text Input')
|
760 |
+
tstrength = gr.Slider(label="Text Domination (NoEffect -- TextOnly)", minimum=0, maximum=1, value=0, step=0.02)
|
761 |
+
|
762 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
763 |
+
button = gr.Button("Run")
|
764 |
+
|
765 |
+
with gr.Column():
|
766 |
+
output_gallary = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
767 |
+
|
768 |
+
input_list = []
|
769 |
+
for i in input_session:
|
770 |
+
input_list += i
|
771 |
+
button.click(
|
772 |
+
vd_inference.inference_dcg,
|
773 |
+
inputs=[img, fcs, text, tstrength, seed],
|
774 |
+
outputs=[output_gallary])
|
775 |
+
|
776 |
+
if with_example:
|
777 |
+
gr.Examples(
|
778 |
+
label='Examples',
|
779 |
+
examples=get_example('Dual-Context'),
|
780 |
+
fn=vd_inference.inference_dcg,
|
781 |
+
inputs=[img, fcs, text, tstrength, seed],
|
782 |
+
outputs=[output_gallary],
|
783 |
+
cache_examples=cache_examples)
|
784 |
+
|
785 |
+
def tcg_interface(with_example=False):
|
786 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Triple-Context") + '</p>')
|
787 |
+
with gr.Row():
|
788 |
+
input_session = []
|
789 |
+
with gr.Column(min_width=940):
|
790 |
+
with gr.Row():
|
791 |
+
with gr.Column():
|
792 |
+
img0 = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
793 |
+
img0.as_example = types.MethodType(customized_as_example, img0)
|
794 |
+
imgm0 = gr.Image(label='Image Input with Mask', type='pil', elem_id='customized_imbox', tool='sketch', source="upload", visible=False)
|
795 |
+
imgm0.postprocess = types.MethodType(customized_postprocess, imgm0)
|
796 |
+
imgm0.as_example = types.MethodType(customized_as_example, imgm0)
|
797 |
+
istrength0 = gr.Slider(label="Weight", minimum=0, maximum=1, value=1, step=0.02)
|
798 |
+
fcs0 = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
799 |
+
msk0 = gr.Checkbox(label='Use mask?')
|
800 |
+
swapf0 = image_mimage_swap(img0, imgm0)
|
801 |
+
|
802 |
+
msk0.change(
|
803 |
+
fn=swapf0,
|
804 |
+
inputs=[img0, imgm0, msk0],
|
805 |
+
outputs=[img0, imgm0],)
|
806 |
+
input_session.append([img0, imgm0, istrength0, fcs0, msk0])
|
807 |
+
|
808 |
+
with gr.Column():
|
809 |
+
img1 = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
810 |
+
img1.as_example = types.MethodType(customized_as_example, img1)
|
811 |
+
imgm1 = gr.Image(label='Image Input with Mask', type='pil', elem_id='customized_imbox', tool='sketch', source="upload", visible=False)
|
812 |
+
imgm1.postprocess = types.MethodType(customized_postprocess, imgm1)
|
813 |
+
imgm1.as_example = types.MethodType(customized_as_example, imgm1)
|
814 |
+
istrength1 = gr.Slider(label="Weight", minimum=0, maximum=1, value=1, step=0.02)
|
815 |
+
fcs1 = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
816 |
+
msk1 = gr.Checkbox(label='Use mask?')
|
817 |
+
swapf1 = image_mimage_swap(img1, imgm1)
|
818 |
+
|
819 |
+
msk1.change(
|
820 |
+
fn=swapf1,
|
821 |
+
inputs=[img1, imgm1, msk1],
|
822 |
+
outputs=[img1, imgm1],)
|
823 |
+
input_session.append([img1, imgm1, istrength1, fcs1, msk1])
|
824 |
+
|
825 |
+
gr.HTML('<p id=myinst>  Weight: The strength of the reference image. This weight is subject to <u>Text Domination</u>).</p>'+
|
826 |
+
'<p id=myinst>  Focus: Focus on what aspect of the image? (0-semantic, 0.5-balanced (default), 1-style).</p>'+
|
827 |
+
'<p id=myinst>  Mask: Remove regions on reference image so they will not influence the output.</p>',)
|
828 |
+
|
829 |
+
text = gr.Textbox(lines=2, placeholder="Input prompt...", label='Text Input')
|
830 |
+
tstrength = gr.Slider(label="Text Domination (NoEffect -- TextOnly)", minimum=0, maximum=1, value=0, step=0.02)
|
831 |
+
|
832 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
833 |
+
button = gr.Button("Run")
|
834 |
+
|
835 |
+
with gr.Column(min_width=470):
|
836 |
+
input_gallary = gr.Gallery(label="Input Display", elem_id="customized_imbox").style(grid=2)
|
837 |
+
output_gallary = gr.Gallery(label="Image Result", elem_id="customized_imbox").style(grid=n_sample_image)
|
838 |
+
|
839 |
+
input_list = []
|
840 |
+
for i in input_session:
|
841 |
+
input_list += i
|
842 |
+
input_list += [text, tstrength, seed]
|
843 |
+
button.click(
|
844 |
+
vd_inference.inference_tcg,
|
845 |
+
inputs=input_list,
|
846 |
+
outputs=[input_gallary, output_gallary])
|
847 |
+
|
848 |
+
if with_example:
|
849 |
+
create_myexamples(
|
850 |
+
label='Examples',
|
851 |
+
examples=get_example('Triple-Context'),
|
852 |
+
fn=vd_inference.inference_tcg,
|
853 |
+
inputs=input_list,
|
854 |
+
outputs=[input_gallary, output_gallary, ],
|
855 |
+
cache_examples=cache_examples, )
|
856 |
+
|
857 |
+
gr.HTML('<br><p id=myinst>  How to add mask: Please see the following instructions.</p><br>'+
|
858 |
+
'<img src="file/assets/demo/misc/mask_inst1.gif" style="float:left;max-width:450px;">'+
|
859 |
+
'<img src="file/assets/demo/misc/mask_inst2.gif" style="float:left;max-width:450px;">'+
|
860 |
+
'<img src="file/assets/demo/misc/mask_inst3.gif" style="float:left;max-width:450px;">',)
|
861 |
+
|
862 |
+
def mcg_interface(with_example=False):
|
863 |
+
num_img_input = 4
|
864 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Multi-Context") + '</p>')
|
865 |
+
with gr.Row():
|
866 |
+
input_session = []
|
867 |
+
with gr.Column():
|
868 |
+
for idx in range(num_img_input):
|
869 |
+
with gr.Tab('Image{}'.format(idx+1)):
|
870 |
+
img = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
871 |
+
img.as_example = types.MethodType(customized_as_example, img)
|
872 |
+
imgm = gr.Image(label='Image Input with Mask', type='pil', elem_id='customized_imbox', tool='sketch', source="upload", visible=False)
|
873 |
+
imgm.postprocess = types.MethodType(customized_postprocess, imgm)
|
874 |
+
imgm.as_example = types.MethodType(customized_as_example, imgm)
|
875 |
+
|
876 |
+
with gr.Row():
|
877 |
+
istrength = gr.Slider(label="Weight", minimum=0, maximum=1, value=1, step=0.02)
|
878 |
+
fcs = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
879 |
+
msk = gr.Checkbox(label='Use mask?')
|
880 |
+
gr.HTML('<p id=myinst>  Weight: The strength of the reference image. This weight is subject to <u>Text Domination</u>).</p>'+
|
881 |
+
'<p id=myinst>  Focus: Focus on what aspect of the image? (0-semantic, 0.5-balanced (default), 1-style).</p>'+
|
882 |
+
'<p id=myinst>  Mask: Remove regions on reference image so they will not influence the output.</p>',)
|
883 |
+
|
884 |
+
msk.change(
|
885 |
+
fn=image_mimage_swap(img, imgm),
|
886 |
+
inputs=[img, imgm, msk],
|
887 |
+
outputs=[img, imgm],)
|
888 |
+
input_session.append([img, imgm, istrength, fcs, msk])
|
889 |
+
|
890 |
+
text = gr.Textbox(lines=2, placeholder="Input prompt...", label='Text Input')
|
891 |
+
tstrength = gr.Slider(label="Text Domination (NoEffect -- TextOnly)", minimum=0, maximum=1, value=0, step=0.02)
|
892 |
+
|
893 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
894 |
+
button = gr.Button("Run")
|
895 |
+
|
896 |
+
|
897 |
+
with gr.Column():
|
898 |
+
input_gallary = gr.Gallery(label="Input Display", elem_id='customized_imbox').style(grid=4)
|
899 |
+
output_gallary = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
900 |
+
|
901 |
+
input_list = []
|
902 |
+
for i in input_session:
|
903 |
+
input_list += i
|
904 |
+
input_list += [text, tstrength, seed]
|
905 |
+
button.click(
|
906 |
+
vd_inference.inference_mcg,
|
907 |
+
inputs=input_list,
|
908 |
+
outputs=[input_gallary, output_gallary], )
|
909 |
+
|
910 |
+
if with_example:
|
911 |
+
create_myexamples(
|
912 |
+
label='Examples',
|
913 |
+
examples=get_example('Multi-Context'),
|
914 |
+
fn=vd_inference.inference_mcg,
|
915 |
+
inputs=input_list,
|
916 |
+
outputs=[input_gallary, output_gallary],
|
917 |
+
cache_examples=cache_examples, )
|
918 |
+
|
919 |
+
gr.HTML('<br><p id=myinst>  How to add mask: Please see the following instructions.</p><br>'+
|
920 |
+
'<img src="file/assets/demo/misc/mask_inst1.gif" style="float:left;max-width:450px;">'+
|
921 |
+
'<img src="file/assets/demo/misc/mask_inst2.gif" style="float:left;max-width:450px;">'+
|
922 |
+
'<img src="file/assets/demo/misc/mask_inst3.gif" style="float:left;max-width:450px;">',)
|
923 |
+
|
924 |
+
###########
|
925 |
+
# Example #
|
926 |
+
###########
|
927 |
+
|
928 |
+
def get_example(mode):
|
929 |
+
if mode == 'Text-to-Image':
|
930 |
+
case = [
|
931 |
+
['a dream of a village in china, by Caspar David Friedrich, matte painting trending on artstation HQ', 23],
|
932 |
+
['a beautiful landscape with mountains and rivers', 20],
|
933 |
+
]
|
934 |
+
elif mode == "Image-Variation":
|
935 |
+
case = [
|
936 |
+
['assets/demo/reg_example/ghibli.jpg', 0, 0.5, 'None', 20],
|
937 |
+
['assets/demo/reg_example/ghibli.jpg', 0.5, 0.5, 'None', 20],
|
938 |
+
['assets/demo/reg_example/matisse.jpg', 0, 0, 'None', 20],
|
939 |
+
['assets/demo/reg_example/matisse.jpg', 0, 1, 'Simple', 20],
|
940 |
+
['assets/demo/reg_example/vermeer.jpg', 0.2, 0.3, 'None', 30],
|
941 |
+
]
|
942 |
+
elif mode == "Image-to-Text":
|
943 |
+
case = [
|
944 |
+
['assets/demo/reg_example/house_by_lake.jpg', 20],
|
945 |
+
]
|
946 |
+
elif mode == "Text-Variation":
|
947 |
+
case = [
|
948 |
+
['heavy arms gundam penguin mech', 20],
|
949 |
+
]
|
950 |
+
elif mode == "Dual-Context":
|
951 |
+
case = [
|
952 |
+
['assets/demo/reg_example/benz.jpg', 0.5, 'cyberpunk 2077', 0.7, 22],
|
953 |
+
['assets/demo/reg_example/ghibli.jpg', 1, 'Red maple on a hill in golden Autumn.', 0.5, 21],
|
954 |
+
]
|
955 |
+
elif mode == "Triple-Context":
|
956 |
+
case = [
|
957 |
+
[
|
958 |
+
'assets/demo/reg_example/night_light.jpg', None, 1 , 0.5, False,
|
959 |
+
'assets/demo/reg_example/paris.jpg' , None, 0.94, 0.5, False,
|
960 |
+
"snow on the street", 0.4, 28],
|
961 |
+
[
|
962 |
+
'assets/demo/tcg_example/e1i0.jpg', None, 1 , 0.5, False,
|
963 |
+
'assets/demo/tcg_example/e1i1.jpg', None, 0.94, 0.5, False,
|
964 |
+
"a painting of an elegant woman in front of the moon", 0.2, 217],
|
965 |
+
[
|
966 |
+
'assets/demo/tcg_example/e2i0.jpg', None, 1, 0.5, False,
|
967 |
+
'assets/demo/reg_example/paris.jpg', None, 1, 0.5, False,
|
968 |
+
"", 0, 29],
|
969 |
+
[
|
970 |
+
'assets/demo/tcg_example/e0i0.jpg', None, 1 , 0.5, False,
|
971 |
+
'assets/demo/tcg_example/e0i1.jpg', None, 0.9, 0.5, False,
|
972 |
+
"rose blooms on the tree", 0.2, 20],
|
973 |
+
[
|
974 |
+
'assets/demo/reg_example/ghibli.jpg', None, 1 , 1 , False,
|
975 |
+
'assets/demo/reg_example/space.jpg' , None, 0.84, 0.5, False,
|
976 |
+
"", 0, 20],
|
977 |
+
[
|
978 |
+
'assets/demo/reg_example/train.jpg' , None, 0.8, 0.5, False,
|
979 |
+
'assets/demo/reg_example/matisse.jpg', None, 1 , 1 , False,
|
980 |
+
"", 0, 20],
|
981 |
+
]
|
982 |
+
elif mode == "Multi-Context":
|
983 |
+
case = [
|
984 |
+
[
|
985 |
+
'assets/demo/mcg_example/e0i0.jpg', None, 1, 0.5, False,
|
986 |
+
'assets/demo/mcg_example/e0i1.jpg', None, 1, 0.5, False,
|
987 |
+
'assets/demo/mcg_example/e0i2.jpg', None, 0.86, 0.5, False,
|
988 |
+
None, None, 1, 0.5, False,
|
989 |
+
"", 0, 20],
|
990 |
+
]
|
991 |
+
else:
|
992 |
+
raise ValueError
|
993 |
+
return case
|
994 |
+
|
995 |
+
#############
|
996 |
+
# Interface #
|
997 |
+
#############
|
998 |
+
|
999 |
+
css = """
|
1000 |
+
#customized_imbox {
|
1001 |
+
min-height: 450px;
|
1002 |
+
}
|
1003 |
+
#customized_imbox>div[data-testid="image"] {
|
1004 |
+
min-height: 450px;
|
1005 |
+
}
|
1006 |
+
#customized_imbox>div[data-testid="image"]>div {
|
1007 |
+
min-height: 450px;
|
1008 |
+
}
|
1009 |
+
#customized_imbox>div[data-testid="image"]>iframe {
|
1010 |
+
min-height: 450px;
|
1011 |
+
}
|
1012 |
+
#customized_imbox>div.unpadded_box {
|
1013 |
+
min-height: 450px;
|
1014 |
+
}
|
1015 |
+
#myinst {
|
1016 |
+
font-size: 0.8rem;
|
1017 |
+
margin: 0rem;
|
1018 |
+
color: #6B7280;
|
1019 |
+
}
|
1020 |
+
"""
|
1021 |
+
|
1022 |
+
if True:
|
1023 |
+
with gr.Blocks(css=css) as demo:
|
1024 |
+
gr.HTML(
|
1025 |
+
"""
|
1026 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
1027 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
1028 |
+
Versatile Diffusion{}
|
1029 |
+
</h1>
|
1030 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
1031 |
+
We built <b>Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework</b>, as a step towards <b>Universal Generative AI</b>.
|
1032 |
+
VD can natively support image-to-text, image-variation, text-to-image, and text-variation,
|
1033 |
+
and can be further extended to other applications such as
|
1034 |
+
semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more.
|
1035 |
+
Future versions will support more modalities such as speech, music, video and 3D.
|
1036 |
+
</h2>
|
1037 |
+
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
1038 |
+
Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang,
|
1039 |
+
and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a>
|
1040 |
+
[<a href="https://arxiv.org/abs/2211.08332" style="color:blue;">arXiv</a>]
|
1041 |
+
[<a href="https://github.com/SHI-Labs/Versatile-Diffusion" style="color:blue;">GitHub</a>]
|
1042 |
+
</h3>
|
1043 |
+
</div>
|
1044 |
+
""".format(' '+vd_inference.which))
|
1045 |
+
# .format('')) #
|
1046 |
+
|
1047 |
+
with gr.Tab('Text-to-Image'):
|
1048 |
+
t2i_interface(with_example=True)
|
1049 |
+
with gr.Tab('Image-Variation'):
|
1050 |
+
i2i_interface(with_example=True)
|
1051 |
+
with gr.Tab('Image-to-Text'):
|
1052 |
+
i2t_interface(with_example=True)
|
1053 |
+
with gr.Tab('Text-Variation'):
|
1054 |
+
t2t_interface(with_example=True)
|
1055 |
+
with gr.Tab('Dual-Context Image-Generation'):
|
1056 |
+
dcg_interface(with_example=True)
|
1057 |
+
with gr.Tab('Triple-Context Image-Blender'):
|
1058 |
+
tcg_interface(with_example=True)
|
1059 |
+
with gr.Tab('Multi-Context Image-Blender'):
|
1060 |
+
mcg_interface(with_example=True)
|
1061 |
+
|
1062 |
+
gr.HTML(
|
1063 |
+
"""
|
1064 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
1065 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
1066 |
+
<b>Caution</b>:
|
1067 |
+
We would like the raise the awareness of users of this demo of its potential issues and concerns.
|
1068 |
+
Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope.
|
1069 |
+
In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data.
|
1070 |
+
So far, we keep all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future.
|
1071 |
+
We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
|
1072 |
+
</h3>
|
1073 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
1074 |
+
<b>Biases and content acknowledgement</b>:
|
1075 |
+
Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence.
|
1076 |
+
VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contained unintended exceptions as we removed illegal content.
|
1077 |
+
VD in this demo is meant only for research purposes.
|
1078 |
+
</h3>
|
1079 |
+
</div>
|
1080 |
+
""")
|
1081 |
+
|
1082 |
+
demo.launch(share=True)
|
1083 |
+
# demo.launch(debug=True)
|
assets/demo/mcg_example/e0i0.jpg
ADDED
![]() |
assets/demo/mcg_example/e0i1.jpg
ADDED
![]() |
assets/demo/mcg_example/e0i2.jpg
ADDED
![]() |
assets/demo/misc/mask_inst1.gif
ADDED
![]() |
Git LFS Details
|
assets/demo/misc/mask_inst2.gif
ADDED
![]() |
Git LFS Details
|
assets/demo/misc/mask_inst3.gif
ADDED
![]() |
Git LFS Details
|
assets/demo/misc/noimage.jpg
ADDED
![]() |
assets/demo/reg_example/benz.jpg
ADDED
![]() |
assets/demo/reg_example/boy_and_girl.jpg
ADDED
![]() |
assets/demo/reg_example/church.jpg
ADDED
![]() |
assets/demo/reg_example/firework.jpg
ADDED
![]() |
assets/demo/reg_example/ghibli.jpg
ADDED
![]() |
assets/demo/reg_example/horse.jpg
ADDED
![]() |
assets/demo/reg_example/house_by_lake.jpg
ADDED
![]() |
assets/demo/reg_example/matisse.jpg
ADDED
![]() |
assets/demo/reg_example/night_light.jpg
ADDED
![]() |
assets/demo/reg_example/noimage.jpg
ADDED
![]() |
assets/demo/reg_example/paris.jpg
ADDED
![]() |
assets/demo/reg_example/penguin.jpg
ADDED
![]() |
assets/demo/reg_example/san_diego.jpg
ADDED
![]() |
assets/demo/reg_example/scream.jpg
ADDED
![]() |
assets/demo/reg_example/space.jpg
ADDED
![]() |
assets/demo/reg_example/tiger.jpg
ADDED
![]() |
assets/demo/reg_example/train.jpg
ADDED
![]() |
assets/demo/reg_example/vermeer.jpg
ADDED
![]() |
assets/demo/tcg_example/e0i0.jpg
ADDED
![]() |
assets/demo/tcg_example/e0i1.jpg
ADDED
![]() |
assets/demo/tcg_example/e1i0.jpg
ADDED
![]() |
assets/demo/tcg_example/e1i1.jpg
ADDED
![]() |
assets/demo/tcg_example/e2i0.jpg
ADDED
![]() |
assets/figures/share_instruction.png
ADDED
![]() |
configs/model/autokl.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
autokl:
|
2 |
+
symbol: autokl
|
3 |
+
find_unused_parameters: false
|
4 |
+
|
5 |
+
autokl_v1:
|
6 |
+
super_cfg: autokl
|
7 |
+
type: autoencoderkl
|
8 |
+
args:
|
9 |
+
embed_dim: 4
|
10 |
+
ddconfig:
|
11 |
+
double_z: true
|
12 |
+
z_channels: 4
|
13 |
+
resolution: 256
|
14 |
+
in_channels: 3
|
15 |
+
out_ch: 3
|
16 |
+
ch: 128
|
17 |
+
ch_mult: [1, 2, 4, 4]
|
18 |
+
num_res_blocks: 2
|
19 |
+
attn_resolutions: []
|
20 |
+
dropout: 0.0
|
21 |
+
lossconfig: null
|
22 |
+
# pth: pretrained/kl-f8.pth
|
23 |
+
hfm: ['shi-labs/versatile-diffusion-model', 'pretrained_pth/kl-f8.pth']
|
configs/model/clip.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clip:
|
2 |
+
symbol: clip
|
3 |
+
args: {}
|
4 |
+
|
5 |
+
clip_text_context_encoder:
|
6 |
+
super_cfg: clip
|
7 |
+
type: clip_text_context_encoder
|
8 |
+
args: {}
|
9 |
+
|
10 |
+
clip_image_context_encoder:
|
11 |
+
super_cfg: clip
|
12 |
+
type: clip_image_context_encoder
|
13 |
+
args: {}
|
configs/model/openai_unet.yaml
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#########
|
2 |
+
# v1 2d #
|
3 |
+
#########
|
4 |
+
|
5 |
+
openai_unet_2d_v1:
|
6 |
+
type: openai_unet_2d_next
|
7 |
+
args:
|
8 |
+
in_channels: 4
|
9 |
+
out_channels: 4
|
10 |
+
model_channels: 320
|
11 |
+
attention_resolutions: [ 4, 2, 1 ]
|
12 |
+
num_res_blocks: [ 2, 2, 2, 2 ]
|
13 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
14 |
+
num_heads: 8
|
15 |
+
context_dim: 768
|
16 |
+
use_checkpoint: True
|
17 |
+
parts: [global, data, context]
|
18 |
+
|
19 |
+
openai_unet_2d_v1_g:
|
20 |
+
super_cfg: openai_unet_2d_v1
|
21 |
+
args:
|
22 |
+
parts: [global]
|
23 |
+
|
24 |
+
openai_unet_2d_v1_d:
|
25 |
+
super_cfg: openai_unet_2d_v1
|
26 |
+
args:
|
27 |
+
parts: [data]
|
28 |
+
|
29 |
+
openai_unet_2d_v1_c:
|
30 |
+
super_cfg: openai_unet_2d_v1
|
31 |
+
args:
|
32 |
+
parts: [context]
|
33 |
+
|
34 |
+
openai_unet_2d_v1_gd:
|
35 |
+
super_cfg: openai_unet_2d_v1
|
36 |
+
args:
|
37 |
+
parts: [global, data]
|
38 |
+
|
39 |
+
openai_unet_2d_v1_gc:
|
40 |
+
super_cfg: openai_unet_2d_v1
|
41 |
+
args:
|
42 |
+
parts: [global, context]
|
43 |
+
|
44 |
+
openai_unet_2d_v1_dc:
|
45 |
+
super_cfg: openai_unet_2d_v1
|
46 |
+
args:
|
47 |
+
parts: [data, context]
|
48 |
+
|
49 |
+
#########
|
50 |
+
# v1 0d #
|
51 |
+
#########
|
52 |
+
|
53 |
+
openai_unet_0d_v1:
|
54 |
+
type: openai_unet_0d_next
|
55 |
+
args:
|
56 |
+
input_channels: 768
|
57 |
+
model_channels: 320
|
58 |
+
output_channels: 768
|
59 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
60 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
61 |
+
second_dim: [ 4, 4, 4, 4 ]
|
62 |
+
with_attn: [true, true, true, false]
|
63 |
+
num_heads: 8
|
64 |
+
context_dim: 768
|
65 |
+
use_checkpoint: True
|
66 |
+
parts: [global, data, context]
|
67 |
+
|
68 |
+
openai_unet_0d_v1_g:
|
69 |
+
super_cfg: openai_unet_0d_v1
|
70 |
+
args:
|
71 |
+
parts: [global]
|
72 |
+
|
73 |
+
openai_unet_0d_v1_d:
|
74 |
+
super_cfg: openai_unet_0d_v1
|
75 |
+
args:
|
76 |
+
parts: [data]
|
77 |
+
|
78 |
+
openai_unet_0d_v1_c:
|
79 |
+
super_cfg: openai_unet_0d_v1
|
80 |
+
args:
|
81 |
+
parts: [context]
|
82 |
+
|
83 |
+
openai_unet_0d_v1_gd:
|
84 |
+
super_cfg: openai_unet_0d_v1
|
85 |
+
args:
|
86 |
+
parts: [global, data]
|
87 |
+
|
88 |
+
openai_unet_0d_v1_gc:
|
89 |
+
super_cfg: openai_unet_0d_v1
|
90 |
+
args:
|
91 |
+
parts: [global, context]
|
92 |
+
|
93 |
+
openai_unet_0d_v1_dc:
|
94 |
+
super_cfg: openai_unet_0d_v1
|
95 |
+
args:
|
96 |
+
parts: [data, context]
|
configs/model/optimus.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
optimus:
|
3 |
+
symbol: optimus
|
4 |
+
find_unused_parameters: false
|
5 |
+
args: {}
|
6 |
+
|
7 |
+
optimus_bert_encoder:
|
8 |
+
super_cfg: optimus
|
9 |
+
type: optimus_bert_connector
|
10 |
+
# pth: pretrained/optimus_bert_encoder.pth
|
11 |
+
args:
|
12 |
+
config:
|
13 |
+
architectures:
|
14 |
+
- BertForMaskedLM
|
15 |
+
attention_probs_dropout_prob: 0.1
|
16 |
+
finetuning_task: null
|
17 |
+
hidden_act: gelu
|
18 |
+
hidden_dropout_prob: 0.1
|
19 |
+
hidden_size: 768
|
20 |
+
initializer_range: 0.02
|
21 |
+
intermediate_size: 3072
|
22 |
+
layer_norm_eps: 1.e-12
|
23 |
+
max_position_embeddings: 512
|
24 |
+
num_attention_heads: 12
|
25 |
+
num_hidden_layers: 12
|
26 |
+
num_labels: 2
|
27 |
+
output_attentions: false
|
28 |
+
output_hidden_states: false
|
29 |
+
pruned_heads: {}
|
30 |
+
torchscript: false
|
31 |
+
type_vocab_size: 2
|
32 |
+
vocab_size: 28996
|
33 |
+
latent_size: 768
|
34 |
+
|
35 |
+
optimus_bert_tokenizer:
|
36 |
+
super_cfg: optimus
|
37 |
+
type: optimus_bert_tokenizer
|
38 |
+
args:
|
39 |
+
do_lower_case: false
|
40 |
+
max_len: 512
|
41 |
+
vocab_file: lib/model_zoo/optimus_models/vocab/bert-base-cased-vocab.txt
|
42 |
+
|
43 |
+
optimus_gpt2_decoder:
|
44 |
+
super_cfg: optimus
|
45 |
+
type: optimus_gpt2_connector
|
46 |
+
# pth: pretrained/optimus_gpt2_decoder.pth
|
47 |
+
args:
|
48 |
+
config:
|
49 |
+
architectures:
|
50 |
+
- GPT2LMHeadModel
|
51 |
+
attn_pdrop: 0.1
|
52 |
+
embd_pdrop: 0.1
|
53 |
+
finetuning_task: null
|
54 |
+
hidden_size: 768
|
55 |
+
initializer_range: 0.02
|
56 |
+
latent_size: 768
|
57 |
+
layer_norm_epsilon: 1.e-05
|
58 |
+
max_position_embeddings: 1024
|
59 |
+
n_ctx: 1024
|
60 |
+
n_embd: 768
|
61 |
+
n_head: 12
|
62 |
+
n_layer: 12
|
63 |
+
n_positions: 1024
|
64 |
+
num_attention_heads: 12
|
65 |
+
num_hidden_layers: 12
|
66 |
+
num_labels: 1
|
67 |
+
output_attentions: false
|
68 |
+
output_hidden_states: false
|
69 |
+
pretrained_config_archive_map:
|
70 |
+
gpt2 : https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json
|
71 |
+
gpt2-medium : https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json
|
72 |
+
gpt2-large : https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-config.json
|
73 |
+
pruned_heads: {}
|
74 |
+
resid_pdrop: 0.1
|
75 |
+
summary_activation: null
|
76 |
+
summary_first_dropout: 0.1
|
77 |
+
summary_proj_to_labels: true
|
78 |
+
summary_type: cls_index
|
79 |
+
summary_use_proj: true
|
80 |
+
torchscript: false
|
81 |
+
vocab_size: 50260
|
82 |
+
|
83 |
+
optimus_gpt2_tokenizer:
|
84 |
+
super_cfg: optimus
|
85 |
+
type: optimus_gpt2_tokenizer
|
86 |
+
args:
|
87 |
+
do_lower_case: false
|
88 |
+
max_len: 1024
|
89 |
+
vocab_file: lib/model_zoo/optimus_models/vocab/gpt2-vocab.json
|
90 |
+
merges_file: lib/model_zoo/optimus_models/vocab/gpt2-merges.txt
|
91 |
+
|
92 |
+
optimus_v1:
|
93 |
+
super_cfg: optimus
|
94 |
+
type: optimus_vae_next
|
95 |
+
pth: pretrained/optimus-vae.pth
|
96 |
+
args:
|
97 |
+
encoder: MODEL(optimus_bert_encoder)
|
98 |
+
decoder: MODEL(optimus_gpt2_decoder)
|
99 |
+
tokenizer_encoder: MODEL(optimus_bert_tokenizer)
|
100 |
+
tokenizer_decoder: MODEL(optimus_gpt2_tokenizer)
|
101 |
+
args:
|
102 |
+
latent_size: 768
|
configs/model/vd.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
vd_base:
|
2 |
+
symbol: vd
|
3 |
+
find_unused_parameters: true
|
4 |
+
type: vd_v2_0
|
5 |
+
args:
|
6 |
+
beta_linear_start: 0.00085
|
7 |
+
beta_linear_end: 0.012
|
8 |
+
timesteps: 1000
|
9 |
+
use_ema: false
|
10 |
+
|
11 |
+
###########
|
12 |
+
# vd v1.0 #
|
13 |
+
###########
|
14 |
+
|
15 |
+
vd_four_flow_v1-0:
|
16 |
+
super_cfg: vd_base
|
17 |
+
args:
|
18 |
+
vae_cfg_list:
|
19 |
+
- [image, MODEL(autokl_v1)]
|
20 |
+
- [text, MODEL(optimus_v1)]
|
21 |
+
ctx_cfg_list:
|
22 |
+
- [image, MODEL(clip_image_context_encoder)]
|
23 |
+
- [text, MODEL(clip_text_context_encoder)]
|
24 |
+
diffuser_cfg_list:
|
25 |
+
- [image, MODEL(openai_unet_2d_v1)]
|
26 |
+
- [text, MODEL(openai_unet_0d_v1_dc)]
|
27 |
+
global_layer_ptr: image
|
28 |
+
latent_scale_factor:
|
29 |
+
image: 0.18215
|
cusomized_gradio_blocks.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import ast
|
4 |
+
import csv
|
5 |
+
import inspect
|
6 |
+
import os
|
7 |
+
import subprocess
|
8 |
+
import tempfile
|
9 |
+
import threading
|
10 |
+
import warnings
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Tuple
|
13 |
+
|
14 |
+
import matplotlib
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import numpy as np
|
17 |
+
import PIL
|
18 |
+
import PIL.Image
|
19 |
+
|
20 |
+
import gradio
|
21 |
+
from gradio import components, processing_utils, routes, utils
|
22 |
+
from gradio.context import Context
|
23 |
+
from gradio.documentation import document, set_documentation_group
|
24 |
+
from gradio.flagging import CSVLogger
|
25 |
+
|
26 |
+
if TYPE_CHECKING: # Only import for type checking (to avoid circular imports).
|
27 |
+
from gradio.components import IOComponent
|
28 |
+
|
29 |
+
CACHED_FOLDER = "gradio_cached_examples"
|
30 |
+
LOG_FILE = "log.csv"
|
31 |
+
|
32 |
+
def create_myexamples(
|
33 |
+
examples: List[Any] | List[List[Any]] | str,
|
34 |
+
inputs: IOComponent | List[IOComponent],
|
35 |
+
outputs: IOComponent | List[IOComponent] | None = None,
|
36 |
+
fn: Callable | None = None,
|
37 |
+
cache_examples: bool = False,
|
38 |
+
examples_per_page: int = 10,
|
39 |
+
_api_mode: bool = False,
|
40 |
+
label: str | None = None,
|
41 |
+
elem_id: str | None = None,
|
42 |
+
run_on_click: bool = False,
|
43 |
+
preprocess: bool = True,
|
44 |
+
postprocess: bool = True,
|
45 |
+
batch: bool = False,):
|
46 |
+
"""Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
|
47 |
+
examples_obj = MyExamples(
|
48 |
+
examples=examples,
|
49 |
+
inputs=inputs,
|
50 |
+
outputs=outputs,
|
51 |
+
fn=fn,
|
52 |
+
cache_examples=cache_examples,
|
53 |
+
examples_per_page=examples_per_page,
|
54 |
+
_api_mode=_api_mode,
|
55 |
+
label=label,
|
56 |
+
elem_id=elem_id,
|
57 |
+
run_on_click=run_on_click,
|
58 |
+
preprocess=preprocess,
|
59 |
+
postprocess=postprocess,
|
60 |
+
batch=batch,
|
61 |
+
_initiated_directly=False,
|
62 |
+
)
|
63 |
+
utils.synchronize_async(examples_obj.create)
|
64 |
+
return examples_obj
|
65 |
+
|
66 |
+
class MyExamples(gradio.helpers.Examples):
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
examples: List[Any] | List[List[Any]] | str,
|
70 |
+
inputs: IOComponent | List[IOComponent],
|
71 |
+
outputs: IOComponent | List[IOComponent] | None = None,
|
72 |
+
fn: Callable | None = None,
|
73 |
+
cache_examples: bool = False,
|
74 |
+
examples_per_page: int = 10,
|
75 |
+
_api_mode: bool = False,
|
76 |
+
label: str | None = "Examples",
|
77 |
+
elem_id: str | None = None,
|
78 |
+
run_on_click: bool = False,
|
79 |
+
preprocess: bool = True,
|
80 |
+
postprocess: bool = True,
|
81 |
+
batch: bool = False,
|
82 |
+
_initiated_directly: bool = True,):
|
83 |
+
|
84 |
+
if _initiated_directly:
|
85 |
+
warnings.warn(
|
86 |
+
"Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
|
87 |
+
)
|
88 |
+
|
89 |
+
if cache_examples and (fn is None or outputs is None):
|
90 |
+
raise ValueError("If caching examples, `fn` and `outputs` must be provided")
|
91 |
+
|
92 |
+
if not isinstance(inputs, list):
|
93 |
+
inputs = [inputs]
|
94 |
+
if outputs and not isinstance(outputs, list):
|
95 |
+
outputs = [outputs]
|
96 |
+
|
97 |
+
working_directory = Path().absolute()
|
98 |
+
|
99 |
+
if examples is None:
|
100 |
+
raise ValueError("The parameter `examples` cannot be None")
|
101 |
+
elif isinstance(examples, list) and (
|
102 |
+
len(examples) == 0 or isinstance(examples[0], list)
|
103 |
+
):
|
104 |
+
pass
|
105 |
+
elif (
|
106 |
+
isinstance(examples, list) and len(inputs) == 1
|
107 |
+
): # If there is only one input component, examples can be provided as a regular list instead of a list of lists
|
108 |
+
examples = [[e] for e in examples]
|
109 |
+
elif isinstance(examples, str):
|
110 |
+
if not Path(examples).exists():
|
111 |
+
raise FileNotFoundError(
|
112 |
+
"Could not find examples directory: " + examples
|
113 |
+
)
|
114 |
+
working_directory = examples
|
115 |
+
if not (Path(examples) / LOG_FILE).exists():
|
116 |
+
if len(inputs) == 1:
|
117 |
+
examples = [[e] for e in os.listdir(examples)]
|
118 |
+
else:
|
119 |
+
raise FileNotFoundError(
|
120 |
+
"Could not find log file (required for multiple inputs): "
|
121 |
+
+ LOG_FILE
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
with open(Path(examples) / LOG_FILE) as logs:
|
125 |
+
examples = list(csv.reader(logs))
|
126 |
+
examples = [
|
127 |
+
examples[i][: len(inputs)] for i in range(1, len(examples))
|
128 |
+
] # remove header and unnecessary columns
|
129 |
+
|
130 |
+
else:
|
131 |
+
raise ValueError(
|
132 |
+
"The parameter `examples` must either be a string directory or a list"
|
133 |
+
"(if there is only 1 input component) or (more generally), a nested "
|
134 |
+
"list, where each sublist represents a set of inputs."
|
135 |
+
)
|
136 |
+
|
137 |
+
input_has_examples = [False] * len(inputs)
|
138 |
+
for example in examples:
|
139 |
+
for idx, example_for_input in enumerate(example):
|
140 |
+
# if not (example_for_input is None):
|
141 |
+
if True:
|
142 |
+
try:
|
143 |
+
input_has_examples[idx] = True
|
144 |
+
except IndexError:
|
145 |
+
pass # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)
|
146 |
+
|
147 |
+
inputs_with_examples = [
|
148 |
+
inp for (inp, keep) in zip(inputs, input_has_examples) if keep
|
149 |
+
]
|
150 |
+
non_none_examples = [
|
151 |
+
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
|
152 |
+
for example in examples
|
153 |
+
]
|
154 |
+
|
155 |
+
self.examples = examples
|
156 |
+
self.non_none_examples = non_none_examples
|
157 |
+
self.inputs = inputs
|
158 |
+
self.inputs_with_examples = inputs_with_examples
|
159 |
+
self.outputs = outputs
|
160 |
+
self.fn = fn
|
161 |
+
self.cache_examples = cache_examples
|
162 |
+
self._api_mode = _api_mode
|
163 |
+
self.preprocess = preprocess
|
164 |
+
self.postprocess = postprocess
|
165 |
+
self.batch = batch
|
166 |
+
|
167 |
+
with utils.set_directory(working_directory):
|
168 |
+
self.processed_examples = [
|
169 |
+
[
|
170 |
+
component.postprocess(sample)
|
171 |
+
for component, sample in zip(inputs, example)
|
172 |
+
]
|
173 |
+
for example in examples
|
174 |
+
]
|
175 |
+
self.non_none_processed_examples = [
|
176 |
+
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
|
177 |
+
for example in self.processed_examples
|
178 |
+
]
|
179 |
+
if cache_examples:
|
180 |
+
for example in self.examples:
|
181 |
+
if len([ex for ex in example if ex is not None]) != len(self.inputs):
|
182 |
+
warnings.warn(
|
183 |
+
"Examples are being cached but not all input components have "
|
184 |
+
"example values. This may result in an exception being thrown by "
|
185 |
+
"your function. If you do get an error while caching examples, make "
|
186 |
+
"sure all of your inputs have example values for all of your examples "
|
187 |
+
"or you provide default values for those particular parameters in your function."
|
188 |
+
)
|
189 |
+
break
|
190 |
+
|
191 |
+
with utils.set_directory(working_directory):
|
192 |
+
self.dataset = components.Dataset(
|
193 |
+
components=inputs_with_examples,
|
194 |
+
samples=non_none_examples,
|
195 |
+
type="index",
|
196 |
+
label=label,
|
197 |
+
samples_per_page=examples_per_page,
|
198 |
+
elem_id=elem_id,
|
199 |
+
)
|
200 |
+
|
201 |
+
self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id)
|
202 |
+
self.cached_file = Path(self.cached_folder) / "log.csv"
|
203 |
+
self.cache_examples = cache_examples
|
204 |
+
self.run_on_click = run_on_click
|
205 |
+
|
206 |
+
from gradio import utils, processing_utils
|
207 |
+
from PIL import Image as _Image
|
208 |
+
from pathlib import Path
|
209 |
+
import numpy as np
|
210 |
+
|
211 |
+
def customized_postprocess(self, y):
|
212 |
+
if y is None:
|
213 |
+
return None
|
214 |
+
|
215 |
+
if isinstance(y, dict):
|
216 |
+
if self.tool == "sketch" and self.source in ["upload", "webcam"]:
|
217 |
+
y, mask = y["image"], y["mask"]
|
218 |
+
if y is None:
|
219 |
+
return None
|
220 |
+
elif isinstance(y, np.ndarray):
|
221 |
+
im = processing_utils.encode_array_to_base64(y)
|
222 |
+
elif isinstance(y, _Image.Image):
|
223 |
+
im = processing_utils.encode_pil_to_base64(y)
|
224 |
+
elif isinstance(y, (str, Path)):
|
225 |
+
im = processing_utils.encode_url_or_file_to_base64(y)
|
226 |
+
else:
|
227 |
+
raise ValueError("Cannot process this value as an Image")
|
228 |
+
im = self._format_image(im)
|
229 |
+
|
230 |
+
if mask is None:
|
231 |
+
return im
|
232 |
+
elif isinstance(y, np.ndarray):
|
233 |
+
mask_im = processing_utils.encode_array_to_base64(mask)
|
234 |
+
elif isinstance(y, _Image.Image):
|
235 |
+
mask_im = processing_utils.encode_pil_to_base64(mask)
|
236 |
+
elif isinstance(y, (str, Path)):
|
237 |
+
mask_im = processing_utils.encode_url_or_file_to_base64(mask)
|
238 |
+
else:
|
239 |
+
raise ValueError("Cannot process this value as an Image")
|
240 |
+
|
241 |
+
return {"image": im, "mask" : mask_im,}
|
242 |
+
|
243 |
+
elif isinstance(y, np.ndarray):
|
244 |
+
return processing_utils.encode_array_to_base64(y)
|
245 |
+
elif isinstance(y, _Image.Image):
|
246 |
+
return processing_utils.encode_pil_to_base64(y)
|
247 |
+
elif isinstance(y, (str, Path)):
|
248 |
+
return processing_utils.encode_url_or_file_to_base64(y)
|
249 |
+
else:
|
250 |
+
raise ValueError("Cannot process this value as an Image")
|
251 |
+
|
252 |
+
# def customized_as_example(self, input_data=None):
|
253 |
+
# if input_data is None:
|
254 |
+
# return str('assets/demo/misc/noimage.jpg')
|
255 |
+
# elif isinstance(input_data, dict):
|
256 |
+
# im = np.array(PIL.Image.open(input_data["image"])).astype(float)
|
257 |
+
# mask = np.array(PIL.Image.open(input_data["mask"])).astype(float)/255
|
258 |
+
# imm = (im * (1-mask)).astype(np.uint8)
|
259 |
+
# import time
|
260 |
+
# ctime = int(time.time()*100)
|
261 |
+
# impath = 'assets/demo/temp/temp_{}.png'.format(ctime)
|
262 |
+
# PIL.Image.fromarray(imm).save(impath)
|
263 |
+
# return str(utils.abspath(impath))
|
264 |
+
# else:
|
265 |
+
# return str(utils.abspath(input_data))
|
266 |
+
|
267 |
+
def customized_as_example(self, input_data=None):
|
268 |
+
if input_data is None:
|
269 |
+
return str('assets/demo/misc/noimage.jpg')
|
270 |
+
else:
|
271 |
+
return str(utils.abspath(input_data))
|
gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/captions.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"/home/james/Project/vd-demo/gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/tmp9xugbhobbnp5ds0r.png": null, "/home/james/Project/vd-demo/gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/tmp0m_lns_xtd2zm06b.png": null}
|
gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/tmp0m_lns_xtd2zm06b.png
ADDED
![]() |
gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419/tmp9xugbhobbnp5ds0r.png
ADDED
![]() |
gradio_cached_examples/12/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Image Result,flag,username,timestamp
|
2 |
+
/home/james/Project/vd-demo/gradio_cached_examples/12/Image Result/23645e03-6435-4819-a746-2840be976419,,,2023-02-07 08:44:12.243513
|
lib/__init__.py
ADDED
File without changes
|
lib/cfg_helper.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import shutil
|
4 |
+
import copy
|
5 |
+
import time
|
6 |
+
import pprint
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import matplotlib
|
10 |
+
import argparse
|
11 |
+
import json
|
12 |
+
import yaml
|
13 |
+
from easydict import EasyDict as edict
|
14 |
+
|
15 |
+
from .model_zoo import get_model
|
16 |
+
|
17 |
+
############
|
18 |
+
# cfg_bank #
|
19 |
+
############
|
20 |
+
|
21 |
+
def cfg_solvef(cmd, root):
|
22 |
+
if not isinstance(cmd, str):
|
23 |
+
return cmd
|
24 |
+
|
25 |
+
if cmd.find('SAME')==0:
|
26 |
+
zoom = root
|
27 |
+
p = cmd[len('SAME'):].strip('()').split('.')
|
28 |
+
p = [pi.strip() for pi in p]
|
29 |
+
for pi in p:
|
30 |
+
try:
|
31 |
+
pi = int(pi)
|
32 |
+
except:
|
33 |
+
pass
|
34 |
+
|
35 |
+
try:
|
36 |
+
zoom = zoom[pi]
|
37 |
+
except:
|
38 |
+
return cmd
|
39 |
+
return cfg_solvef(zoom, root)
|
40 |
+
|
41 |
+
if cmd.find('SEARCH')==0:
|
42 |
+
zoom = root
|
43 |
+
p = cmd[len('SEARCH'):].strip('()').split('.')
|
44 |
+
p = [pi.strip() for pi in p]
|
45 |
+
find = True
|
46 |
+
# Depth first search
|
47 |
+
for pi in p:
|
48 |
+
try:
|
49 |
+
pi = int(pi)
|
50 |
+
except:
|
51 |
+
pass
|
52 |
+
|
53 |
+
try:
|
54 |
+
zoom = zoom[pi]
|
55 |
+
except:
|
56 |
+
find = False
|
57 |
+
break
|
58 |
+
|
59 |
+
if find:
|
60 |
+
return cfg_solvef(zoom, root)
|
61 |
+
else:
|
62 |
+
if isinstance(root, dict):
|
63 |
+
for ri in root:
|
64 |
+
rv = cfg_solvef(cmd, root[ri])
|
65 |
+
if rv != cmd:
|
66 |
+
return rv
|
67 |
+
if isinstance(root, list):
|
68 |
+
for ri in root:
|
69 |
+
rv = cfg_solvef(cmd, ri)
|
70 |
+
if rv != cmd:
|
71 |
+
return rv
|
72 |
+
return cmd
|
73 |
+
|
74 |
+
if cmd.find('MODEL')==0:
|
75 |
+
goto = cmd[len('MODEL'):].strip('()')
|
76 |
+
return model_cfg_bank()(goto)
|
77 |
+
|
78 |
+
if cmd.find('DATASET')==0:
|
79 |
+
goto = cmd[len('DATASET'):].strip('()')
|
80 |
+
return dataset_cfg_bank()(goto)
|
81 |
+
|
82 |
+
return cmd
|
83 |
+
|
84 |
+
def cfg_solve(cfg, cfg_root):
|
85 |
+
# The function solve cfg element such that
|
86 |
+
# all sorrogate input are settled.
|
87 |
+
# (i.e. SAME(***) )
|
88 |
+
if isinstance(cfg, list):
|
89 |
+
for i in range(len(cfg)):
|
90 |
+
if isinstance(cfg[i], (list, dict)):
|
91 |
+
cfg[i] = cfg_solve(cfg[i], cfg_root)
|
92 |
+
else:
|
93 |
+
cfg[i] = cfg_solvef(cfg[i], cfg_root)
|
94 |
+
if isinstance(cfg, dict):
|
95 |
+
for k in cfg:
|
96 |
+
if isinstance(cfg[k], (list, dict)):
|
97 |
+
cfg[k] = cfg_solve(cfg[k], cfg_root)
|
98 |
+
else:
|
99 |
+
cfg[k] = cfg_solvef(cfg[k], cfg_root)
|
100 |
+
return cfg
|
101 |
+
|
102 |
+
class model_cfg_bank(object):
|
103 |
+
def __init__(self):
|
104 |
+
self.cfg_dir = osp.join('configs', 'model')
|
105 |
+
self.cfg_bank = edict()
|
106 |
+
|
107 |
+
def __call__(self, name):
|
108 |
+
if name not in self.cfg_bank:
|
109 |
+
cfg_path = self.get_yaml_path(name)
|
110 |
+
with open(cfg_path, 'r') as f:
|
111 |
+
cfg_new = yaml.load(
|
112 |
+
f, Loader=yaml.FullLoader)
|
113 |
+
cfg_new = edict(cfg_new)
|
114 |
+
self.cfg_bank.update(cfg_new)
|
115 |
+
|
116 |
+
cfg = self.cfg_bank[name]
|
117 |
+
cfg.name = name
|
118 |
+
if 'super_cfg' not in cfg:
|
119 |
+
cfg = cfg_solve(cfg, cfg)
|
120 |
+
self.cfg_bank[name] = cfg
|
121 |
+
return copy.deepcopy(cfg)
|
122 |
+
|
123 |
+
super_cfg = self.__call__(cfg.super_cfg)
|
124 |
+
# unlike other field,
|
125 |
+
# args will not be replaced but update.
|
126 |
+
if 'args' in cfg:
|
127 |
+
if 'args' in super_cfg:
|
128 |
+
super_cfg.args.update(cfg.args)
|
129 |
+
else:
|
130 |
+
super_cfg.args = cfg.args
|
131 |
+
cfg.pop('args')
|
132 |
+
|
133 |
+
super_cfg.update(cfg)
|
134 |
+
super_cfg.pop('super_cfg')
|
135 |
+
cfg = super_cfg
|
136 |
+
try:
|
137 |
+
delete_args = cfg.pop('delete_args')
|
138 |
+
except:
|
139 |
+
delete_args = []
|
140 |
+
|
141 |
+
for dargs in delete_args:
|
142 |
+
cfg.args.pop(dargs)
|
143 |
+
|
144 |
+
cfg = cfg_solve(cfg, cfg)
|
145 |
+
self.cfg_bank[name] = cfg
|
146 |
+
return copy.deepcopy(cfg)
|
147 |
+
|
148 |
+
def get_yaml_path(self, name):
|
149 |
+
if name.find('openai_unet')==0:
|
150 |
+
return osp.join(
|
151 |
+
self.cfg_dir, 'openai_unet.yaml')
|
152 |
+
elif (name.find('clip')==0) or (name.find('openclip')==0):
|
153 |
+
return osp.join(
|
154 |
+
self.cfg_dir, 'clip.yaml')
|
155 |
+
elif name.find('vd')==0:
|
156 |
+
return osp.join(
|
157 |
+
self.cfg_dir, 'vd.yaml')
|
158 |
+
elif name.find('optimus')==0:
|
159 |
+
return osp.join(
|
160 |
+
self.cfg_dir, 'optimus.yaml')
|
161 |
+
elif name.find('autokl')==0:
|
162 |
+
return osp.join(
|
163 |
+
self.cfg_dir, 'autokl.yaml')
|
164 |
+
else:
|
165 |
+
raise ValueError
|
166 |
+
|
167 |
+
class dataset_cfg_bank(object):
|
168 |
+
def __init__(self):
|
169 |
+
self.cfg_dir = osp.join('configs', 'dataset')
|
170 |
+
self.cfg_bank = edict()
|
171 |
+
|
172 |
+
def __call__(self, name):
|
173 |
+
if name not in self.cfg_bank:
|
174 |
+
cfg_path = self.get_yaml_path(name)
|
175 |
+
with open(cfg_path, 'r') as f:
|
176 |
+
cfg_new = yaml.load(
|
177 |
+
f, Loader=yaml.FullLoader)
|
178 |
+
cfg_new = edict(cfg_new)
|
179 |
+
self.cfg_bank.update(cfg_new)
|
180 |
+
|
181 |
+
cfg = self.cfg_bank[name]
|
182 |
+
cfg.name = name
|
183 |
+
if cfg.get('super_cfg', None) is None:
|
184 |
+
cfg = cfg_solve(cfg, cfg)
|
185 |
+
self.cfg_bank[name] = cfg
|
186 |
+
return copy.deepcopy(cfg)
|
187 |
+
|
188 |
+
super_cfg = self.__call__(cfg.super_cfg)
|
189 |
+
super_cfg.update(cfg)
|
190 |
+
cfg = super_cfg
|
191 |
+
cfg.super_cfg = None
|
192 |
+
try:
|
193 |
+
delete = cfg.pop('delete')
|
194 |
+
except:
|
195 |
+
delete = []
|
196 |
+
|
197 |
+
for dargs in delete:
|
198 |
+
cfg.pop(dargs)
|
199 |
+
|
200 |
+
cfg = cfg_solve(cfg, cfg)
|
201 |
+
self.cfg_bank[name] = cfg
|
202 |
+
return copy.deepcopy(cfg)
|
203 |
+
|
204 |
+
def get_yaml_path(self, name):
|
205 |
+
if name.find('laion2b')==0:
|
206 |
+
return osp.join(
|
207 |
+
self.cfg_dir, 'laion2b.yaml')
|
208 |
+
else:
|
209 |
+
raise ValueError
|
210 |
+
|
211 |
+
class experiment_cfg_bank(object):
|
212 |
+
def __init__(self):
|
213 |
+
self.cfg_dir = osp.join('configs', 'experiment')
|
214 |
+
self.cfg_bank = edict()
|
215 |
+
|
216 |
+
def __call__(self, name):
|
217 |
+
if name not in self.cfg_bank:
|
218 |
+
cfg_path = self.get_yaml_path(name)
|
219 |
+
with open(cfg_path, 'r') as f:
|
220 |
+
cfg = yaml.load(
|
221 |
+
f, Loader=yaml.FullLoader)
|
222 |
+
cfg = edict(cfg)
|
223 |
+
|
224 |
+
cfg = cfg_solve(cfg, cfg)
|
225 |
+
cfg = cfg_solve(cfg, cfg)
|
226 |
+
# twice for SEARCH
|
227 |
+
self.cfg_bank[name] = cfg
|
228 |
+
return copy.deepcopy(cfg)
|
229 |
+
|
230 |
+
def get_yaml_path(self, name):
|
231 |
+
return osp.join(
|
232 |
+
self.cfg_dir, name+'.yaml')
|
233 |
+
|
234 |
+
def load_cfg_yaml(path):
|
235 |
+
if osp.isfile(path):
|
236 |
+
cfg_path = path
|
237 |
+
elif osp.isfile(osp.join('configs', 'experiment', path)):
|
238 |
+
cfg_path = osp.join('configs', 'experiment', path)
|
239 |
+
elif osp.isfile(osp.join('configs', 'experiment', path+'.yaml')):
|
240 |
+
cfg_path = osp.join('configs', 'experiment', path+'.yaml')
|
241 |
+
else:
|
242 |
+
assert False, 'No such config!'
|
243 |
+
|
244 |
+
with open(cfg_path, 'r') as f:
|
245 |
+
cfg = yaml.load(f, Loader=yaml.FullLoader)
|
246 |
+
cfg = edict(cfg)
|
247 |
+
cfg = cfg_solve(cfg, cfg)
|
248 |
+
cfg = cfg_solve(cfg, cfg)
|
249 |
+
return cfg
|
250 |
+
|
251 |
+
##############
|
252 |
+
# cfg_helper #
|
253 |
+
##############
|
254 |
+
|
255 |
+
def get_experiment_id(ref=None):
|
256 |
+
if ref is None:
|
257 |
+
time.sleep(0.5)
|
258 |
+
return int(time.time()*100)
|
259 |
+
else:
|
260 |
+
try:
|
261 |
+
return int(ref)
|
262 |
+
except:
|
263 |
+
pass
|
264 |
+
|
265 |
+
_, ref = osp.split(ref)
|
266 |
+
ref = ref.split('_')[0]
|
267 |
+
try:
|
268 |
+
return int(ref)
|
269 |
+
except:
|
270 |
+
assert False, 'Invalid experiment ID!'
|
271 |
+
|
272 |
+
def record_resume_cfg(path):
|
273 |
+
cnt = 0
|
274 |
+
while True:
|
275 |
+
if osp.exists(path+'.{:04d}'.format(cnt)):
|
276 |
+
cnt += 1
|
277 |
+
continue
|
278 |
+
shutil.copyfile(path, path+'.{:04d}'.format(cnt))
|
279 |
+
break
|
280 |
+
|
281 |
+
def get_command_line_args():
|
282 |
+
parser = argparse.ArgumentParser()
|
283 |
+
parser.add_argument('--debug', action='store_true', default=False)
|
284 |
+
parser.add_argument('--config', type=str)
|
285 |
+
parser.add_argument('--gpu', nargs='+', type=int)
|
286 |
+
|
287 |
+
parser.add_argument('--node_rank', type=int)
|
288 |
+
parser.add_argument('--node_list', nargs='+', type=str)
|
289 |
+
parser.add_argument('--nodes', type=int)
|
290 |
+
parser.add_argument('--addr', type=str, default='127.0.0.1')
|
291 |
+
parser.add_argument('--port', type=int, default=11233)
|
292 |
+
|
293 |
+
parser.add_argument('--signature', nargs='+', type=str)
|
294 |
+
parser.add_argument('--seed', type=int)
|
295 |
+
|
296 |
+
parser.add_argument('--eval', type=str)
|
297 |
+
parser.add_argument('--eval_subdir', type=str)
|
298 |
+
parser.add_argument('--pretrained', type=str)
|
299 |
+
|
300 |
+
parser.add_argument('--resume_dir', type=str)
|
301 |
+
parser.add_argument('--resume_step', type=int)
|
302 |
+
parser.add_argument('--resume_weight', type=str)
|
303 |
+
|
304 |
+
args = parser.parse_args()
|
305 |
+
|
306 |
+
# Special handling the resume
|
307 |
+
if args.resume_dir is not None:
|
308 |
+
cfg = edict()
|
309 |
+
cfg.env = edict()
|
310 |
+
cfg.env.debug = args.debug
|
311 |
+
cfg.env.resume = edict()
|
312 |
+
cfg.env.resume.dir = args.resume_dir
|
313 |
+
cfg.env.resume.step = args.resume_step
|
314 |
+
cfg.env.resume.weight = args.resume_weight
|
315 |
+
return cfg
|
316 |
+
|
317 |
+
cfg = load_cfg_yaml(args.config)
|
318 |
+
cfg.env.debug = args.debug
|
319 |
+
cfg.env.gpu_device = [0] if args.gpu is None else list(args.gpu)
|
320 |
+
cfg.env.master_addr = args.addr
|
321 |
+
cfg.env.master_port = args.port
|
322 |
+
cfg.env.dist_url = 'tcp://{}:{}'.format(args.addr, args.port)
|
323 |
+
|
324 |
+
if args.node_list is None:
|
325 |
+
cfg.env.node_rank = 0 if args.node_rank is None else args.node_rank
|
326 |
+
cfg.env.nodes = 1 if args.nodes is None else args.nodes
|
327 |
+
else:
|
328 |
+
import socket
|
329 |
+
hostname = socket.gethostname()
|
330 |
+
assert cfg.env.master_addr == args.node_list[0]
|
331 |
+
cfg.env.node_rank = args.node_list.index(hostname)
|
332 |
+
cfg.env.nodes = len(args.node_list)
|
333 |
+
cfg.env.node_list = args.node_list
|
334 |
+
|
335 |
+
istrain = False if args.eval is not None else True
|
336 |
+
isdebug = cfg.env.debug
|
337 |
+
|
338 |
+
if istrain:
|
339 |
+
if isdebug:
|
340 |
+
cfg.env.experiment_id = 999999999999
|
341 |
+
cfg.train.signature = ['debug']
|
342 |
+
else:
|
343 |
+
cfg.env.experiment_id = get_experiment_id()
|
344 |
+
if args.signature is not None:
|
345 |
+
cfg.train.signature = args.signature
|
346 |
+
else:
|
347 |
+
if 'train' in cfg:
|
348 |
+
cfg.pop('train')
|
349 |
+
cfg.env.experiment_id = get_experiment_id(args.eval)
|
350 |
+
if args.signature is not None:
|
351 |
+
cfg.eval.signature = args.signature
|
352 |
+
|
353 |
+
if isdebug and (args.eval is None):
|
354 |
+
cfg.env.experiment_id = 999999999999
|
355 |
+
cfg.eval.signature = ['debug']
|
356 |
+
|
357 |
+
if args.eval_subdir is not None:
|
358 |
+
if isdebug:
|
359 |
+
cfg.eval.eval_subdir = 'debug'
|
360 |
+
else:
|
361 |
+
cfg.eval.eval_subdir = args.eval_subdir
|
362 |
+
if args.pretrained is not None:
|
363 |
+
cfg.eval.pretrained = args.pretrained
|
364 |
+
# The override pretrained over the setting in cfg.model
|
365 |
+
|
366 |
+
if args.seed is not None:
|
367 |
+
cfg.env.rnd_seed = args.seed
|
368 |
+
|
369 |
+
return cfg
|
370 |
+
|
371 |
+
def cfg_initiates(cfg):
|
372 |
+
cfge = cfg.env
|
373 |
+
isdebug = cfge.debug
|
374 |
+
isresume = 'resume' in cfge
|
375 |
+
istrain = 'train' in cfg
|
376 |
+
haseval = 'eval' in cfg
|
377 |
+
cfgt = cfg.train if istrain else None
|
378 |
+
cfgv = cfg.eval if haseval else None
|
379 |
+
|
380 |
+
###############################
|
381 |
+
# get some environment params #
|
382 |
+
###############################
|
383 |
+
|
384 |
+
cfge.computer = os.uname()
|
385 |
+
cfge.torch_version = str(torch.__version__)
|
386 |
+
|
387 |
+
##########
|
388 |
+
# resume #
|
389 |
+
##########
|
390 |
+
|
391 |
+
if isresume:
|
392 |
+
resume_cfg_path = osp.join(cfge.resume.dir, 'config.yaml')
|
393 |
+
record_resume_cfg(resume_cfg_path)
|
394 |
+
with open(resume_cfg_path, 'r') as f:
|
395 |
+
cfg_resume = yaml.load(f, Loader=yaml.FullLoader)
|
396 |
+
cfg_resume = edict(cfg_resume)
|
397 |
+
cfg_resume.env.update(cfge)
|
398 |
+
cfg = cfg_resume
|
399 |
+
cfge = cfg.env
|
400 |
+
log_file = cfg.train.log_file
|
401 |
+
|
402 |
+
print('')
|
403 |
+
print('##########')
|
404 |
+
print('# resume #')
|
405 |
+
print('##########')
|
406 |
+
print('')
|
407 |
+
with open(log_file, 'a') as f:
|
408 |
+
print('', file=f)
|
409 |
+
print('##########', file=f)
|
410 |
+
print('# resume #', file=f)
|
411 |
+
print('##########', file=f)
|
412 |
+
print('', file=f)
|
413 |
+
|
414 |
+
pprint.pprint(cfg)
|
415 |
+
with open(log_file, 'a') as f:
|
416 |
+
pprint.pprint(cfg, f)
|
417 |
+
|
418 |
+
####################
|
419 |
+
# node distributed #
|
420 |
+
####################
|
421 |
+
|
422 |
+
if cfg.env.master_addr!='127.0.0.1':
|
423 |
+
os.environ['MASTER_ADDR'] = cfge.master_addr
|
424 |
+
os.environ['MASTER_PORT'] = '{}'.format(cfge.master_port)
|
425 |
+
if cfg.env.dist_backend=='nccl':
|
426 |
+
os.environ['NCCL_SOCKET_FAMILY'] = 'AF_INET'
|
427 |
+
if cfg.env.dist_backend=='gloo':
|
428 |
+
os.environ['GLOO_SOCKET_FAMILY'] = 'AF_INET'
|
429 |
+
|
430 |
+
#######################
|
431 |
+
# cuda visible device #
|
432 |
+
#######################
|
433 |
+
|
434 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
|
435 |
+
[str(gid) for gid in cfge.gpu_device])
|
436 |
+
|
437 |
+
#####################
|
438 |
+
# return resume cfg #
|
439 |
+
#####################
|
440 |
+
|
441 |
+
if isresume:
|
442 |
+
return cfg
|
443 |
+
|
444 |
+
#############################################
|
445 |
+
# some misc setting that not need in resume #
|
446 |
+
#############################################
|
447 |
+
|
448 |
+
cfgm = cfg.model
|
449 |
+
cfge.gpu_count = len(cfge.gpu_device)
|
450 |
+
|
451 |
+
##########################################
|
452 |
+
# align batch size and num worker config #
|
453 |
+
##########################################
|
454 |
+
|
455 |
+
gpu_n = cfge.gpu_count * cfge.nodes
|
456 |
+
def align_batch_size(bs, bs_per_gpu):
|
457 |
+
assert (bs is not None) or (bs_per_gpu is not None)
|
458 |
+
bs = bs_per_gpu * gpu_n if bs is None else bs
|
459 |
+
bs_per_gpu = bs // gpu_n if bs_per_gpu is None else bs_per_gpu
|
460 |
+
assert (bs == bs_per_gpu * gpu_n)
|
461 |
+
return bs, bs_per_gpu
|
462 |
+
|
463 |
+
if istrain:
|
464 |
+
cfgt.batch_size, cfgt.batch_size_per_gpu = \
|
465 |
+
align_batch_size(cfgt.batch_size, cfgt.batch_size_per_gpu)
|
466 |
+
cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu = \
|
467 |
+
align_batch_size(cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu)
|
468 |
+
if haseval:
|
469 |
+
cfgv.batch_size, cfgv.batch_size_per_gpu = \
|
470 |
+
align_batch_size(cfgv.batch_size, cfgv.batch_size_per_gpu)
|
471 |
+
cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu = \
|
472 |
+
align_batch_size(cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu)
|
473 |
+
|
474 |
+
##################
|
475 |
+
# create log dir #
|
476 |
+
##################
|
477 |
+
|
478 |
+
if istrain:
|
479 |
+
if not isdebug:
|
480 |
+
sig = cfgt.get('signature', [])
|
481 |
+
sig = sig + ['s{}'.format(cfge.rnd_seed)]
|
482 |
+
else:
|
483 |
+
sig = ['debug']
|
484 |
+
|
485 |
+
log_dir = [
|
486 |
+
cfge.log_root_dir,
|
487 |
+
'{}_{}'.format(cfgm.symbol, cfgt.dataset.symbol),
|
488 |
+
'_'.join([str(cfge.experiment_id)] + sig)
|
489 |
+
]
|
490 |
+
log_dir = osp.join(*log_dir)
|
491 |
+
log_file = osp.join(log_dir, 'train.log')
|
492 |
+
if not osp.exists(log_file):
|
493 |
+
os.makedirs(osp.dirname(log_file))
|
494 |
+
cfgt.log_dir = log_dir
|
495 |
+
cfgt.log_file = log_file
|
496 |
+
|
497 |
+
if haseval:
|
498 |
+
cfgv.log_dir = log_dir
|
499 |
+
cfgv.log_file = log_file
|
500 |
+
else:
|
501 |
+
model_symbol = cfgm.symbol
|
502 |
+
if cfgv.get('dataset', None) is None:
|
503 |
+
dataset_symbol = 'nodataset'
|
504 |
+
else:
|
505 |
+
dataset_symbol = cfgv.dataset.symbol
|
506 |
+
|
507 |
+
log_dir = osp.join(cfge.log_root_dir, '{}_{}'.format(model_symbol, dataset_symbol))
|
508 |
+
exp_dir = search_experiment_folder(log_dir, cfge.experiment_id)
|
509 |
+
if exp_dir is None:
|
510 |
+
if not isdebug:
|
511 |
+
sig = cfgv.get('signature', []) + ['evalonly']
|
512 |
+
else:
|
513 |
+
sig = ['debug']
|
514 |
+
exp_dir = '_'.join([str(cfge.experiment_id)] + sig)
|
515 |
+
|
516 |
+
eval_subdir = cfgv.get('eval_subdir', None)
|
517 |
+
# override subdir in debug mode (if eval_subdir is set)
|
518 |
+
eval_subdir = 'debug' if (eval_subdir is not None) and isdebug else eval_subdir
|
519 |
+
|
520 |
+
if eval_subdir is not None:
|
521 |
+
log_dir = osp.join(log_dir, exp_dir, eval_subdir)
|
522 |
+
else:
|
523 |
+
log_dir = osp.join(log_dir, exp_dir)
|
524 |
+
|
525 |
+
disable_log_override = cfgv.get('disable_log_override', False)
|
526 |
+
if osp.isdir(log_dir):
|
527 |
+
if disable_log_override:
|
528 |
+
assert False, 'Override an exsited log_dir is disabled at [{}]'.format(log_dir)
|
529 |
+
else:
|
530 |
+
os.makedirs(log_dir)
|
531 |
+
|
532 |
+
log_file = osp.join(log_dir, 'eval.log')
|
533 |
+
cfgv.log_dir = log_dir
|
534 |
+
cfgv.log_file = log_file
|
535 |
+
|
536 |
+
######################
|
537 |
+
# print and save cfg #
|
538 |
+
######################
|
539 |
+
|
540 |
+
pprint.pprint(cfg)
|
541 |
+
if cfge.node_rank==0:
|
542 |
+
with open(log_file, 'w') as f:
|
543 |
+
pprint.pprint(cfg, f)
|
544 |
+
with open(osp.join(log_dir, 'config.yaml'), 'w') as f:
|
545 |
+
yaml.dump(edict_2_dict(cfg), f)
|
546 |
+
else:
|
547 |
+
with open(osp.join(log_dir, 'config.yaml.{}'.format(cfge.node_rank)), 'w') as f:
|
548 |
+
yaml.dump(edict_2_dict(cfg), f)
|
549 |
+
|
550 |
+
#############
|
551 |
+
# save code #
|
552 |
+
#############
|
553 |
+
|
554 |
+
save_code = False
|
555 |
+
if istrain:
|
556 |
+
save_code = cfgt.get('save_code', False)
|
557 |
+
elif haseval:
|
558 |
+
save_code = cfgv.get('save_code', False)
|
559 |
+
save_code = save_code and (cfge.node_rank==0)
|
560 |
+
|
561 |
+
if save_code:
|
562 |
+
codedir = osp.join(log_dir, 'code')
|
563 |
+
if osp.exists(codedir):
|
564 |
+
shutil.rmtree(codedir)
|
565 |
+
for d in ['configs', 'lib']:
|
566 |
+
fromcodedir = d
|
567 |
+
tocodedir = osp.join(codedir, d)
|
568 |
+
shutil.copytree(
|
569 |
+
fromcodedir, tocodedir,
|
570 |
+
ignore=shutil.ignore_patterns(
|
571 |
+
'*__pycache__*', '*build*'))
|
572 |
+
for codei in os.listdir('.'):
|
573 |
+
if osp.splitext(codei)[1] == 'py':
|
574 |
+
shutil.copy(codei, codedir)
|
575 |
+
|
576 |
+
#######################
|
577 |
+
# set matplotlib mode #
|
578 |
+
#######################
|
579 |
+
|
580 |
+
if 'matplotlib_mode' in cfge:
|
581 |
+
try:
|
582 |
+
matplotlib.use(cfge.matplotlib_mode)
|
583 |
+
except:
|
584 |
+
print('Warning: matplotlib mode [{}] failed to be set!'.format(cfge.matplotlib_mode))
|
585 |
+
|
586 |
+
return cfg
|
587 |
+
|
588 |
+
def edict_2_dict(x):
|
589 |
+
if isinstance(x, dict):
|
590 |
+
xnew = {}
|
591 |
+
for k in x:
|
592 |
+
xnew[k] = edict_2_dict(x[k])
|
593 |
+
return xnew
|
594 |
+
elif isinstance(x, list):
|
595 |
+
xnew = []
|
596 |
+
for i in range(len(x)):
|
597 |
+
xnew.append( edict_2_dict(x[i]) )
|
598 |
+
return xnew
|
599 |
+
else:
|
600 |
+
return x
|
601 |
+
|
602 |
+
def search_experiment_folder(root, exid):
|
603 |
+
target = None
|
604 |
+
for fi in os.listdir(root):
|
605 |
+
if not osp.isdir(osp.join(root, fi)):
|
606 |
+
continue
|
607 |
+
if int(fi.split('_')[0]) == exid:
|
608 |
+
if target is not None:
|
609 |
+
return None # duplicated
|
610 |
+
elif target is None:
|
611 |
+
target = fi
|
612 |
+
return target
|
lib/cfg_holder.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
def singleton(class_):
|
4 |
+
instances = {}
|
5 |
+
def getinstance(*args, **kwargs):
|
6 |
+
if class_ not in instances:
|
7 |
+
instances[class_] = class_(*args, **kwargs)
|
8 |
+
return instances[class_]
|
9 |
+
return getinstance
|
10 |
+
|
11 |
+
##############
|
12 |
+
# cfg_holder #
|
13 |
+
##############
|
14 |
+
|
15 |
+
@singleton
|
16 |
+
class cfg_unique_holder(object):
|
17 |
+
def __init__(self):
|
18 |
+
self.cfg = None
|
19 |
+
# this is use to track the main codes.
|
20 |
+
self.code = set()
|
21 |
+
def save_cfg(self, cfg):
|
22 |
+
self.cfg = copy.deepcopy(cfg)
|
23 |
+
def add_code(self, code):
|
24 |
+
"""
|
25 |
+
A new main code is reached and
|
26 |
+
its name is added.
|
27 |
+
"""
|
28 |
+
self.code.add(code)
|
lib/log_service.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timeit
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import shutil
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.distributed as dist
|
10 |
+
from .cfg_holder import cfg_unique_holder as cfguh
|
11 |
+
from . import sync
|
12 |
+
|
13 |
+
print_console_local_rank0_only = True
|
14 |
+
|
15 |
+
def print_log(*console_info):
|
16 |
+
local_rank = sync.get_rank('local')
|
17 |
+
if print_console_local_rank0_only and (local_rank!=0):
|
18 |
+
return
|
19 |
+
console_info = [str(i) for i in console_info]
|
20 |
+
console_info = ' '.join(console_info)
|
21 |
+
print(console_info)
|
22 |
+
|
23 |
+
if local_rank!=0:
|
24 |
+
return
|
25 |
+
|
26 |
+
log_file = None
|
27 |
+
try:
|
28 |
+
log_file = cfguh().cfg.train.log_file
|
29 |
+
except:
|
30 |
+
try:
|
31 |
+
log_file = cfguh().cfg.eval.log_file
|
32 |
+
except:
|
33 |
+
return
|
34 |
+
if log_file is not None:
|
35 |
+
with open(log_file, 'a') as f:
|
36 |
+
f.write(console_info + '\n')
|
37 |
+
|
38 |
+
class distributed_log_manager(object):
|
39 |
+
def __init__(self):
|
40 |
+
self.sum = {}
|
41 |
+
self.cnt = {}
|
42 |
+
self.time_check = timeit.default_timer()
|
43 |
+
|
44 |
+
cfgt = cfguh().cfg.train
|
45 |
+
use_tensorboard = getattr(cfgt, 'log_tensorboard', False)
|
46 |
+
|
47 |
+
self.ddp = sync.is_ddp()
|
48 |
+
self.rank = sync.get_rank('local')
|
49 |
+
self.world_size = sync.get_world_size('local')
|
50 |
+
|
51 |
+
self.tb = None
|
52 |
+
if use_tensorboard and (self.rank==0):
|
53 |
+
import tensorboardX
|
54 |
+
monitoring_dir = osp.join(cfguh().cfg.train.log_dir, 'tensorboard')
|
55 |
+
self.tb = tensorboardX.SummaryWriter(osp.join(monitoring_dir))
|
56 |
+
|
57 |
+
def accumulate(self, n, **data):
|
58 |
+
if n < 0:
|
59 |
+
raise ValueError
|
60 |
+
|
61 |
+
for itemn, di in data.items():
|
62 |
+
if itemn in self.sum:
|
63 |
+
self.sum[itemn] += di * n
|
64 |
+
self.cnt[itemn] += n
|
65 |
+
else:
|
66 |
+
self.sum[itemn] = di * n
|
67 |
+
self.cnt[itemn] = n
|
68 |
+
|
69 |
+
def get_mean_value_dict(self):
|
70 |
+
value_gather = [
|
71 |
+
self.sum[itemn]/self.cnt[itemn] \
|
72 |
+
for itemn in sorted(self.sum.keys()) ]
|
73 |
+
|
74 |
+
value_gather_tensor = torch.FloatTensor(value_gather).to(self.rank)
|
75 |
+
if self.ddp:
|
76 |
+
dist.all_reduce(value_gather_tensor, op=dist.ReduceOp.SUM)
|
77 |
+
value_gather_tensor /= self.world_size
|
78 |
+
|
79 |
+
mean = {}
|
80 |
+
for idx, itemn in enumerate(sorted(self.sum.keys())):
|
81 |
+
mean[itemn] = value_gather_tensor[idx].item()
|
82 |
+
return mean
|
83 |
+
|
84 |
+
def tensorboard_log(self, step, data, mode='train', **extra):
|
85 |
+
if self.tb is None:
|
86 |
+
return
|
87 |
+
if mode == 'train':
|
88 |
+
self.tb.add_scalar('other/epochn', extra['epochn'], step)
|
89 |
+
if 'lr' in extra:
|
90 |
+
self.tb.add_scalar('other/lr', extra['lr'], step)
|
91 |
+
for itemn, di in data.items():
|
92 |
+
if itemn.find('loss') == 0:
|
93 |
+
self.tb.add_scalar('loss/'+itemn, di, step)
|
94 |
+
elif itemn == 'Loss':
|
95 |
+
self.tb.add_scalar('Loss', di, step)
|
96 |
+
else:
|
97 |
+
self.tb.add_scalar('other/'+itemn, di, step)
|
98 |
+
elif mode == 'eval':
|
99 |
+
if isinstance(data, dict):
|
100 |
+
for itemn, di in data.items():
|
101 |
+
self.tb.add_scalar('eval/'+itemn, di, step)
|
102 |
+
else:
|
103 |
+
self.tb.add_scalar('eval', data, step)
|
104 |
+
return
|
105 |
+
|
106 |
+
def train_summary(self, itern, epochn, samplen, lr, tbstep=None):
|
107 |
+
console_info = [
|
108 |
+
'Iter:{}'.format(itern),
|
109 |
+
'Epoch:{}'.format(epochn),
|
110 |
+
'Sample:{}'.format(samplen),]
|
111 |
+
|
112 |
+
if lr is not None:
|
113 |
+
console_info += ['LR:{:.4E}'.format(lr)]
|
114 |
+
|
115 |
+
mean = self.get_mean_value_dict()
|
116 |
+
|
117 |
+
tbstep = itern if tbstep is None else tbstep
|
118 |
+
self.tensorboard_log(
|
119 |
+
tbstep, mean, mode='train',
|
120 |
+
itern=itern, epochn=epochn, lr=lr)
|
121 |
+
|
122 |
+
loss = mean.pop('Loss')
|
123 |
+
mean_info = ['Loss:{:.4f}'.format(loss)] + [
|
124 |
+
'{}:{:.4f}'.format(itemn, mean[itemn]) \
|
125 |
+
for itemn in sorted(mean.keys()) \
|
126 |
+
if itemn.find('loss') == 0
|
127 |
+
]
|
128 |
+
console_info += mean_info
|
129 |
+
console_info.append('Time:{:.2f}s'.format(
|
130 |
+
timeit.default_timer() - self.time_check))
|
131 |
+
return ' , '.join(console_info)
|
132 |
+
|
133 |
+
def clear(self):
|
134 |
+
self.sum = {}
|
135 |
+
self.cnt = {}
|
136 |
+
self.time_check = timeit.default_timer()
|
137 |
+
|
138 |
+
def tensorboard_close(self):
|
139 |
+
if self.tb is not None:
|
140 |
+
self.tb.close()
|
141 |
+
|
142 |
+
# ----- also include some small utils -----
|
143 |
+
|
144 |
+
def torch_to_numpy(*argv):
|
145 |
+
if len(argv) > 1:
|
146 |
+
data = list(argv)
|
147 |
+
else:
|
148 |
+
data = argv[0]
|
149 |
+
|
150 |
+
if isinstance(data, torch.Tensor):
|
151 |
+
return data.to('cpu').detach().numpy()
|
152 |
+
|
153 |
+
elif isinstance(data, (list, tuple)):
|
154 |
+
out = []
|
155 |
+
for di in data:
|
156 |
+
out.append(torch_to_numpy(di))
|
157 |
+
return out
|
158 |
+
|
159 |
+
elif isinstance(data, dict):
|
160 |
+
out = {}
|
161 |
+
for ni, di in data.items():
|
162 |
+
out[ni] = torch_to_numpy(di)
|
163 |
+
return out
|
164 |
+
|
165 |
+
else:
|
166 |
+
return data
|
lib/model_zoo/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.get_model import get_model
|
2 |
+
from .common.get_optimizer import get_optimizer
|
3 |
+
from .common.get_scheduler import get_scheduler
|
4 |
+
from .common.utils import get_unit
|