File size: 4,628 Bytes
a7d24e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Sema Translation API - Architecture Overview
## ποΈ Project Structure
This FastAPI application follows industry best practices for maintainable, scalable APIs:
### Directory Structure
```
app/
βββ main.py # Application entry point & FastAPI instance
βββ api/v1/endpoints.py # API route handlers (versioned)
βββ core/ # Core configuration & setup
β βββ config.py # Settings management
β βββ logging.py # Structured logging setup
β βββ metrics.py # Prometheus metrics definitions
βββ middleware/ # Custom middleware
β βββ request_middleware.py # Request tracking & metrics
βββ models/schemas.py # Pydantic data models
βββ services/translation.py # Business logic & model management
βββ utils/helpers.py # Utility functions
```
## π§ Design Principles
### 1. Separation of Concerns
- **API Layer**: Route definitions and request/response handling
- **Service Layer**: Business logic and model operations
- **Core Layer**: Configuration, logging, and metrics
- **Models Layer**: Data validation and serialization
### 2. Dependency Injection
- Settings injected via Pydantic Settings
- Services accessed through proper imports
- Middleware applied declaratively
### 3. Configuration Management
- Environment-based configuration
- Type-safe settings with Pydantic
- Centralized configuration in `core/config.py`
### 4. Observability
- Structured JSON logging with structlog
- Prometheus metrics for monitoring
- Request tracking with unique IDs
- Health check endpoints
## π Key Features
### Enterprise-Grade Features
- **Rate Limiting**: IP-based rate limiting with SlowAPI
- **Request Tracking**: Unique request IDs for debugging
- **Metrics Collection**: Prometheus metrics for monitoring
- **Structured Logging**: JSON logs for easy parsing
- **Health Checks**: Comprehensive health monitoring
### API Design
- **Versioned Routes**: `/api/v1/` for future compatibility
- **OpenAPI Documentation**: Auto-generated Swagger UI
- **Type Safety**: Full Pydantic validation
- **Error Handling**: Graceful error responses
### Performance
- **Async/Await**: Full asynchronous request handling
- **Model Caching**: Models loaded once at startup
- **Efficient Translation**: CTranslate2 optimization
## π Security (Testing Phase)
### Current State
- Authentication **removed** for testing phase
- Rate limiting active (60 req/min per IP)
- Input validation with Pydantic
- CORS configured for development
### Future Integration Points
- Supabase authentication ready
- User tracking infrastructure in place
- Usage analytics for billing prepared
## π Monitoring & Observability
### Metrics Available
- Request count by endpoint and status
- Request duration histograms
- Translation count by language pair
- Character count tracking
- Error count by type
### Logging
- Structured JSON logs
- Request/response tracking
- Translation event logging
- Error logging with context
## π Development Workflow
### Local Development
```bash
cd backend/sema-api
pip install -r requirements.txt
uvicorn app.main:app --reload
```
### Docker Development
```bash
docker build -t sema-api .
docker run -p 8000:8000 sema-api
```
### Testing
- Health check: `GET /health`
- Documentation: `GET /docs`
- Metrics: `GET /metrics`
- Translation: `POST /translate`
## π― Future Enhancements
### Authentication Integration
- Supabase JWT validation
- User-based rate limiting
- API key authentication
### Scaling Considerations
- Database integration for usage tracking
- Redis caching for performance
- Load balancer compatibility
- Horizontal scaling support
### Monitoring Enhancements
- Grafana dashboards
- Alerting rules
- Performance profiling
- Usage analytics
## π Maintenance
### Code Organization Benefits
- **Testability**: Each component can be tested independently
- **Maintainability**: Clear separation of concerns
- **Scalability**: Easy to add new features and endpoints
- **Debugging**: Structured logging and request tracking
- **Documentation**: Self-documenting code structure
### Adding New Features
1. **New Endpoints**: Add to `api/v1/endpoints.py`
2. **Business Logic**: Add to appropriate service in `services/`
3. **Data Models**: Add to `models/schemas.py`
4. **Configuration**: Add to `core/config.py`
5. **Middleware**: Add to `middleware/`
This architecture provides a solid foundation for a production-ready translation API that can scale and evolve with your needs.
|