File size: 4,628 Bytes
a7d24e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Sema Translation API - Architecture Overview

## πŸ—οΈ Project Structure

This FastAPI application follows industry best practices for maintainable, scalable APIs:

### Directory Structure
```
app/
β”œβ”€β”€ main.py                     # Application entry point & FastAPI instance
β”œβ”€β”€ api/v1/endpoints.py         # API route handlers (versioned)
β”œβ”€β”€ core/                       # Core configuration & setup
β”‚   β”œβ”€β”€ config.py              # Settings management
β”‚   β”œβ”€β”€ logging.py             # Structured logging setup
β”‚   └── metrics.py             # Prometheus metrics definitions
β”œβ”€β”€ middleware/                 # Custom middleware
β”‚   └── request_middleware.py  # Request tracking & metrics
β”œβ”€β”€ models/schemas.py           # Pydantic data models
β”œβ”€β”€ services/translation.py    # Business logic & model management
└── utils/helpers.py           # Utility functions
```

## πŸ”§ Design Principles

### 1. Separation of Concerns
- **API Layer**: Route definitions and request/response handling
- **Service Layer**: Business logic and model operations
- **Core Layer**: Configuration, logging, and metrics
- **Models Layer**: Data validation and serialization

### 2. Dependency Injection
- Settings injected via Pydantic Settings
- Services accessed through proper imports
- Middleware applied declaratively

### 3. Configuration Management
- Environment-based configuration
- Type-safe settings with Pydantic
- Centralized configuration in `core/config.py`

### 4. Observability
- Structured JSON logging with structlog
- Prometheus metrics for monitoring
- Request tracking with unique IDs
- Health check endpoints

## πŸš€ Key Features

### Enterprise-Grade Features
- **Rate Limiting**: IP-based rate limiting with SlowAPI
- **Request Tracking**: Unique request IDs for debugging
- **Metrics Collection**: Prometheus metrics for monitoring
- **Structured Logging**: JSON logs for easy parsing
- **Health Checks**: Comprehensive health monitoring

### API Design
- **Versioned Routes**: `/api/v1/` for future compatibility
- **OpenAPI Documentation**: Auto-generated Swagger UI
- **Type Safety**: Full Pydantic validation
- **Error Handling**: Graceful error responses

### Performance
- **Async/Await**: Full asynchronous request handling
- **Model Caching**: Models loaded once at startup
- **Efficient Translation**: CTranslate2 optimization

## πŸ”’ Security (Testing Phase)

### Current State
- Authentication **removed** for testing phase
- Rate limiting active (60 req/min per IP)
- Input validation with Pydantic
- CORS configured for development

### Future Integration Points
- Supabase authentication ready
- User tracking infrastructure in place
- Usage analytics for billing prepared

## πŸ“Š Monitoring & Observability

### Metrics Available
- Request count by endpoint and status
- Request duration histograms
- Translation count by language pair
- Character count tracking
- Error count by type

### Logging
- Structured JSON logs
- Request/response tracking
- Translation event logging
- Error logging with context

## πŸ”„ Development Workflow

### Local Development
```bash
cd backend/sema-api
pip install -r requirements.txt
uvicorn app.main:app --reload
```

### Docker Development
```bash
docker build -t sema-api .
docker run -p 8000:8000 sema-api
```

### Testing
- Health check: `GET /health`
- Documentation: `GET /docs`
- Metrics: `GET /metrics`
- Translation: `POST /translate`

## 🎯 Future Enhancements

### Authentication Integration
- Supabase JWT validation
- User-based rate limiting
- API key authentication

### Scaling Considerations
- Database integration for usage tracking
- Redis caching for performance
- Load balancer compatibility
- Horizontal scaling support

### Monitoring Enhancements
- Grafana dashboards
- Alerting rules
- Performance profiling
- Usage analytics

## πŸ“ Maintenance

### Code Organization Benefits
- **Testability**: Each component can be tested independently
- **Maintainability**: Clear separation of concerns
- **Scalability**: Easy to add new features and endpoints
- **Debugging**: Structured logging and request tracking
- **Documentation**: Self-documenting code structure

### Adding New Features
1. **New Endpoints**: Add to `api/v1/endpoints.py`
2. **Business Logic**: Add to appropriate service in `services/`
3. **Data Models**: Add to `models/schemas.py`
4. **Configuration**: Add to `core/config.py`
5. **Middleware**: Add to `middleware/`

This architecture provides a solid foundation for a production-ready translation API that can scale and evolve with your needs.