seayala's picture
Update app.py
447df5c verified
import torch
import gradio as gr
import soundfile as sf
import tempfile
import librosa
from transformers import (
SpeechT5Processor,
SpeechT5ForSpeechToSpeech,
SpeechT5HifiGan
)
from datasets import load_dataset
# Modelos
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Embeddings de voz
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
# Función principal
def voice_conversion(audio_file):
audio, sr = librosa.load(audio_file, sr=16000)
inputs = processor(audio=audio, sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f.name, speech.numpy(), samplerate=16000)
return f.name
# Interfaz
interface = gr.Interface(
fn=voice_conversion,
inputs=gr.Audio(type="filepath", label="Sube un audio (voz hablada)"),
outputs=gr.Audio(type="filepath", label="Voz convertida"),
title="SpeechT5 Voice Conversion",
description="Convierte una voz hablada en otra con SpeechT5 de Microsoft"
)
interface.launch()