import os import tempfile import socket import logging import codecs from typing import List from datetime import datetime from dotenv import load_dotenv today_rev = datetime.now().strftime("%Y%m%d") HOST_NAME = socket.gethostname() # Set or retrieve configuration variables for the redaction app def get_or_create_env_var(var_name:str, default_value:str, print_val:bool=False): ''' Get an environmental variable, and set it to a default value if it doesn't exist ''' # Get the environment variable if it exists value = os.environ.get(var_name) # If it doesn't exist, set the environment variable to the default value if value is None: os.environ[var_name] = default_value value = default_value if print_val == True: print(f'The value of {var_name} is {value}') return value def add_folder_to_path(folder_path: str): ''' Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist. Function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run) ''' if os.path.exists(folder_path) and os.path.isdir(folder_path): print(folder_path, "folder exists.") # Resolve relative path to absolute path absolute_path = os.path.abspath(folder_path) current_path = os.environ['PATH'] if absolute_path not in current_path.split(os.pathsep): full_path_extension = absolute_path + os.pathsep + current_path os.environ['PATH'] = full_path_extension #print(f"Updated PATH with: ", full_path_extension) else: print(f"Directory {folder_path} already exists in PATH.") else: print(f"Folder not found at {folder_path} - not added to PATH") ### # LOAD CONFIG FROM ENV FILE ### CONFIG_FOLDER = get_or_create_env_var('CONFIG_FOLDER', 'config/') # If you have an aws_config env file in the config folder, you can load in app variables this way, e.g. 'config/app_config.env' APP_CONFIG_PATH = get_or_create_env_var('APP_CONFIG_PATH', CONFIG_FOLDER + 'app_config.env') # e.g. config/app_config.env if APP_CONFIG_PATH: if os.path.exists(APP_CONFIG_PATH): print(f"Loading app variables from config file {APP_CONFIG_PATH}") load_dotenv(APP_CONFIG_PATH) else: print("App config file not found at location:", APP_CONFIG_PATH) ### # AWS OPTIONS ### # If you have an aws_config env file in the config folder, you can load in AWS keys this way, e.g. 'env/aws_config.env' AWS_CONFIG_PATH = get_or_create_env_var('AWS_CONFIG_PATH', '') # e.g. config/aws_config.env if AWS_CONFIG_PATH: if os.path.exists(AWS_CONFIG_PATH): print(f"Loading AWS variables from config file {AWS_CONFIG_PATH}") load_dotenv(AWS_CONFIG_PATH) else: print("AWS config file not found at location:", AWS_CONFIG_PATH) RUN_AWS_FUNCTIONS = get_or_create_env_var("RUN_AWS_FUNCTIONS", "0") AWS_REGION = get_or_create_env_var('AWS_REGION', '') AWS_CLIENT_ID = get_or_create_env_var('AWS_CLIENT_ID', '') AWS_CLIENT_SECRET = get_or_create_env_var('AWS_CLIENT_SECRET', '') AWS_USER_POOL_ID = get_or_create_env_var('AWS_USER_POOL_ID', '') AWS_ACCESS_KEY = get_or_create_env_var('AWS_ACCESS_KEY', '') #if AWS_ACCESS_KEY: print(f'AWS_ACCESS_KEY found in environment variables') AWS_SECRET_KEY = get_or_create_env_var('AWS_SECRET_KEY', '') #if AWS_SECRET_KEY: print(f'AWS_SECRET_KEY found in environment variables') # Should the app prioritise using AWS SSO over using API keys stored in environment variables/secrets (defaults to yes) PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS = get_or_create_env_var('PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS', '1') S3_LOG_BUCKET = get_or_create_env_var('S3_LOG_BUCKET', '') # Custom headers e.g. if routing traffic through Cloudfront # Retrieving or setting CUSTOM_HEADER CUSTOM_HEADER = get_or_create_env_var('CUSTOM_HEADER', '') # Retrieving or setting CUSTOM_HEADER_VALUE CUSTOM_HEADER_VALUE = get_or_create_env_var('CUSTOM_HEADER_VALUE', '') ### # File I/O ### SESSION_OUTPUT_FOLDER = get_or_create_env_var('SESSION_OUTPUT_FOLDER', 'False') # i.e. do you want your input and output folders saved within a subfolder based on session hash value within output/input folders OUTPUT_FOLDER = get_or_create_env_var('GRADIO_OUTPUT_FOLDER', 'output/') # 'output/' INPUT_FOLDER = get_or_create_env_var('GRADIO_INPUT_FOLDER', 'input/') # 'input/' # Allow for files to be saved in a temporary folder for increased security in some instances if OUTPUT_FOLDER == "TEMP" or INPUT_FOLDER == "TEMP": # Create a temporary directory with tempfile.TemporaryDirectory() as temp_dir: print(f'Temporary directory created at: {temp_dir}') if OUTPUT_FOLDER == "TEMP": OUTPUT_FOLDER = temp_dir + "/" if INPUT_FOLDER == "TEMP": INPUT_FOLDER = temp_dir + "/" GRADIO_TEMP_DIR = get_or_create_env_var('GRADIO_TEMP_DIR', 'tmp/gradio_tmp/') # Default Gradio temp folder MPLCONFIGDIR = get_or_create_env_var('MPLCONFIGDIR', 'tmp/matplotlib_cache/') # Matplotlib cache folder ### # LOGGING OPTIONS ### # By default, logs are put into a subfolder of today's date and the host name of the instance running the app. This is to avoid at all possible the possibility of log files from one instance overwriting the logs of another instance on S3. If running the app on one system always, or just locally, it is not necessary to make the log folders so specific. # Another way to address this issue would be to write logs to another type of storage, e.g. database such as dynamodb. I may look into this in future. SAVE_LOGS_TO_CSV = get_or_create_env_var('SAVE_LOGS_TO_CSV', 'True') USE_LOG_SUBFOLDERS = get_or_create_env_var('USE_LOG_SUBFOLDERS', 'True') FEEDBACK_LOGS_FOLDER = get_or_create_env_var('FEEDBACK_LOGS_FOLDER', 'feedback/') ACCESS_LOGS_FOLDER = get_or_create_env_var('ACCESS_LOGS_FOLDER', 'logs/') USAGE_LOGS_FOLDER = get_or_create_env_var('USAGE_LOGS_FOLDER', 'usage/') if USE_LOG_SUBFOLDERS == "True": day_log_subfolder = today_rev + '/' host_name_subfolder = HOST_NAME + '/' full_log_subfolder = day_log_subfolder + host_name_subfolder FEEDBACK_LOGS_FOLDER = FEEDBACK_LOGS_FOLDER + full_log_subfolder ACCESS_LOGS_FOLDER = ACCESS_LOGS_FOLDER + full_log_subfolder USAGE_LOGS_FOLDER = USAGE_LOGS_FOLDER + full_log_subfolder S3_FEEDBACK_LOGS_FOLDER = get_or_create_env_var('S3_FEEDBACK_LOGS_FOLDER', 'feedback/' + full_log_subfolder) S3_ACCESS_LOGS_FOLDER = get_or_create_env_var('S3_ACCESS_LOGS_FOLDER', 'logs/' + full_log_subfolder) S3_USAGE_LOGS_FOLDER = get_or_create_env_var('S3_USAGE_LOGS_FOLDER', 'usage/' + full_log_subfolder) LOG_FILE_NAME = get_or_create_env_var('LOG_FILE_NAME', 'log.csv') USAGE_LOG_FILE_NAME = get_or_create_env_var('USAGE_LOG_FILE_NAME', LOG_FILE_NAME) FEEDBACK_LOG_FILE_NAME = get_or_create_env_var('FEEDBACK_LOG_FILE_NAME', LOG_FILE_NAME) # Should the redacted file name be included in the logs? In some instances, the names of the files themselves could be sensitive, and should not be disclosed beyond the app. So, by default this is false. DISPLAY_FILE_NAMES_IN_LOGS = get_or_create_env_var('DISPLAY_FILE_NAMES_IN_LOGS', 'False') # Further customisation options for CSV logs CSV_ACCESS_LOG_HEADERS = get_or_create_env_var('CSV_ACCESS_LOG_HEADERS', '') # If blank, uses component labels CSV_FEEDBACK_LOG_HEADERS = get_or_create_env_var('CSV_FEEDBACK_LOG_HEADERS', '') # If blank, uses component labels CSV_USAGE_LOG_HEADERS = get_or_create_env_var('CSV_USAGE_LOG_HEADERS', '') # If blank, uses component labels ### DYNAMODB logs. Whether to save to DynamoDB, and the headers of the table SAVE_LOGS_TO_DYNAMODB = get_or_create_env_var('SAVE_LOGS_TO_DYNAMODB', 'False') ACCESS_LOG_DYNAMODB_TABLE_NAME = get_or_create_env_var('ACCESS_LOG_DYNAMODB_TABLE_NAME', 'llm_topic_model_access_log') DYNAMODB_ACCESS_LOG_HEADERS = get_or_create_env_var('DYNAMODB_ACCESS_LOG_HEADERS', '') FEEDBACK_LOG_DYNAMODB_TABLE_NAME = get_or_create_env_var('FEEDBACK_LOG_DYNAMODB_TABLE_NAME', 'llm_topic_model_feedback') DYNAMODB_FEEDBACK_LOG_HEADERS = get_or_create_env_var('DYNAMODB_FEEDBACK_LOG_HEADERS', '') USAGE_LOG_DYNAMODB_TABLE_NAME = get_or_create_env_var('USAGE_LOG_DYNAMODB_TABLE_NAME', 'llm_topic_model_usage') DYNAMODB_USAGE_LOG_HEADERS = get_or_create_env_var('DYNAMODB_USAGE_LOG_HEADERS', '') # Report logging to console? LOGGING = get_or_create_env_var('LOGGING', 'False') if LOGGING == 'True': # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') ### # App run variables ### OUTPUT_DEBUG_FILES = get_or_create_env_var('OUTPUT_DEBUG_FILES', 'False') # Whether to output debug files SHOW_ADDITIONAL_INSTRUCTION_TEXTBOXES = get_or_create_env_var('SHOW_ADDITIONAL_INSTRUCTION_TEXTBOXES', 'True') # Whether to show additional instruction textboxes in the GUI TIMEOUT_WAIT = int(get_or_create_env_var('TIMEOUT_WAIT', '30')) # Maximum number of seconds to wait for a response from the LLM NUMBER_OF_RETRY_ATTEMPTS = int(get_or_create_env_var('NUMBER_OF_RETRY_ATTEMPTS', '5')) # Maximum number of times to retry a request to the LLM # Try up to 3 times to get a valid markdown table response with LLM calls, otherwise retry with temperature changed MAX_OUTPUT_VALIDATION_ATTEMPTS = int(get_or_create_env_var('MAX_OUTPUT_VALIDATION_ATTEMPTS', '3')) ENABLE_VALIDATION = get_or_create_env_var('ENABLE_VALIDATION', 'False') # Whether to run validation loop after initial topic extraction MAX_TIME_FOR_LOOP = int(get_or_create_env_var('MAX_TIME_FOR_LOOP', '99999')) # Maximum number of seconds to run the loop for before breaking (to run again, this is to avoid timeouts with some AWS services if deployed there) MAX_COMMENT_CHARS = int(get_or_create_env_var('MAX_COMMENT_CHARS', '14000')) # Maximum number of characters in a comment MAX_ROWS = int(get_or_create_env_var('MAX_ROWS', '5000')) # Maximum number of rows to process MAX_GROUPS = int(get_or_create_env_var('MAX_GROUPS', '99')) # Maximum number of groups to process BATCH_SIZE_DEFAULT = int(get_or_create_env_var('BATCH_SIZE_DEFAULT', '5')) # Default batch size for LLM calls MAXIMUM_ZERO_SHOT_TOPICS = int(get_or_create_env_var('MAXIMUM_ZERO_SHOT_TOPICS', '120')) # Maximum number of zero shot topics to process MAX_SPACES_GPU_RUN_TIME = int(get_or_create_env_var('MAX_SPACES_GPU_RUN_TIME', '240')) # Maximum number of seconds to run on GPU on Hugging Face Spaces DEDUPLICATION_THRESHOLD = int(get_or_create_env_var('DEDUPLICATION_THRESHOLD', '90')) # Deduplication threshold for topic summary tables ### # Model options ### RUN_LOCAL_MODEL = get_or_create_env_var("RUN_LOCAL_MODEL", "0") RUN_AWS_BEDROCK_MODELS = get_or_create_env_var("RUN_AWS_BEDROCK_MODELS", "1") RUN_GEMINI_MODELS = get_or_create_env_var("RUN_GEMINI_MODELS", "1") GEMINI_API_KEY = get_or_create_env_var('GEMINI_API_KEY', '') # Azure/OpenAI AI Inference settings RUN_AZURE_MODELS = get_or_create_env_var("RUN_AZURE_MODELS", "1") AZURE_OPENAI_API_KEY = get_or_create_env_var('AZURE_OPENAI_API_KEY', '') AZURE_OPENAI_INFERENCE_ENDPOINT = get_or_create_env_var('AZURE_OPENAI_INFERENCE_ENDPOINT', '') # Build up options for models model_full_names = list() model_short_names = list() model_source = list() CHOSEN_LOCAL_MODEL_TYPE = get_or_create_env_var("CHOSEN_LOCAL_MODEL_TYPE", "Qwen 3 4B") # Gemma 3 1B # "Gemma 2b" # "Gemma 3 4B" if RUN_LOCAL_MODEL == "1" and CHOSEN_LOCAL_MODEL_TYPE: model_full_names.append(CHOSEN_LOCAL_MODEL_TYPE) model_short_names.append(CHOSEN_LOCAL_MODEL_TYPE) model_source.append("Local") if RUN_AWS_BEDROCK_MODELS == "1": amazon_models = ["anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-7-sonnet-20250219-v1:0", "anthropic.claude-sonnet-4-5-20250929-v1:0", "amazon.nova-micro-v1:0", "amazon.nova-lite-v1:0", "amazon.nova-pro-v1:0", "deepseek.v3-v1:0", "openai.gpt-oss-20b-1:0", "openai.gpt-oss-120b-1:0"] model_full_names.extend(amazon_models) model_short_names.extend(["haiku", "sonnet_3_7", "sonnet_4_5", "nova_micro", "nova_lite", "nova_pro", "deepseek_v3", "gpt_oss_20b_aws", "gpt_oss_120b_aws"]) model_source.extend(["AWS"] * len(amazon_models)) if RUN_GEMINI_MODELS == "1": gemini_models = ["gemini-2.5-flash-lite", "gemini-2.5-flash", "gemini-2.5-pro"] model_full_names.extend(gemini_models) model_short_names.extend(["gemini_flash_lite_2.5", "gemini_flash_2.5", "gemini_pro"]) model_source.extend(["Gemini"] * len(gemini_models)) # Register Azure/OpenAI AI models (model names must match your Azure/OpenAI deployments) if RUN_AZURE_MODELS == "1": # Example deployments; adjust to the deployments you actually create in Azure/OpenAI azure_models = ["gpt-5-mini", "gpt-4o-mini"] model_full_names.extend(azure_models) model_short_names.extend(["gpt-5-mini", "gpt-4o-mini"]) model_source.extend(["Azure/OpenAI"] * len(azure_models)) model_name_map = { full: {"short_name": short, "source": source} for full, short, source in zip(model_full_names, model_short_names, model_source) } if RUN_LOCAL_MODEL == "1": default_model_choice = CHOSEN_LOCAL_MODEL_TYPE elif RUN_AWS_FUNCTIONS == "1": default_model_choice = amazon_models[0] else: default_model_choice = gemini_models[0] default_model_source = model_name_map[default_model_choice]["source"] model_sources = list(set([model_name_map[model]["source"] for model in model_full_names])) def update_model_choice_config(default_model_source, model_name_map): # Filter models by source and return the first matching model name matching_models = [model_name for model_name, model_info in model_name_map.items() if model_info["source"] == default_model_source] output_model = matching_models[0] if matching_models else model_full_names[0] return output_model, matching_models default_model_choice, default_source_models = update_model_choice_config(default_model_source, model_name_map) #print("model_name_map:", model_name_map) # HF token may or may not be needed for downloading models from Hugging Face HF_TOKEN = get_or_create_env_var('HF_TOKEN', '') LOAD_LOCAL_MODEL_AT_START = get_or_create_env_var('LOAD_LOCAL_MODEL_AT_START', 'False') # If you are using a system with low VRAM, you can set this to True to reduce the memory requirements LOW_VRAM_SYSTEM = get_or_create_env_var('LOW_VRAM_SYSTEM', 'False') if LOW_VRAM_SYSTEM == 'True': print("Using settings for low VRAM system") USE_LLAMA_CPP = get_or_create_env_var('USE_LLAMA_CPP', 'True') LLM_MAX_NEW_TOKENS = int(get_or_create_env_var('LLM_MAX_NEW_TOKENS', '4096')) LLM_CONTEXT_LENGTH = int(get_or_create_env_var('LLM_CONTEXT_LENGTH', '16384')) LLM_BATCH_SIZE = int(get_or_create_env_var('LLM_BATCH_SIZE', '512')) KV_QUANT_LEVEL = int(get_or_create_env_var('KV_QUANT_LEVEL', '2')) # 2 = q4_0, 8 = q8_0, 4 = fp16 USE_LLAMA_CPP = get_or_create_env_var('USE_LLAMA_CPP', 'True') # Llama.cpp or transformers with unsloth GEMMA2_REPO_ID = get_or_create_env_var("GEMMA2_2B_REPO_ID", "unsloth/gemma-2-it-GGUF") GEMMA2_REPO_TRANSFORMERS_ID = get_or_create_env_var("GEMMA2_2B_REPO_TRANSFORMERS_ID", "unsloth/gemma-2-2b-it-bnb-4bit") if USE_LLAMA_CPP == "False": GEMMA2_REPO_ID = GEMMA2_REPO_TRANSFORMERS_ID GEMMA2_MODEL_FILE = get_or_create_env_var("GEMMA2_2B_MODEL_FILE", "gemma-2-2b-it.q8_0.gguf") GEMMA2_MODEL_FOLDER = get_or_create_env_var("GEMMA2_2B_MODEL_FOLDER", "model/gemma") GEMMA3_4B_REPO_ID = get_or_create_env_var("GEMMA3_4B_REPO_ID", "unsloth/gemma-3-4b-it-qat-GGUF") GEMMA3_4B_REPO_TRANSFORMERS_ID = get_or_create_env_var("GEMMA3_4B_REPO_TRANSFORMERS_ID", "unsloth/gemma-3-4b-it-qat" ) # "google/gemma-3-4b-it" # "unsloth/gemma-3-4b-it-qat-unsloth-bnb-4bit" # unsloth/gemma-3-4b-it-qat if USE_LLAMA_CPP == "False": GEMMA3_4B_REPO_ID = GEMMA3_4B_REPO_TRANSFORMERS_ID GEMMA3_4B_MODEL_FILE = get_or_create_env_var("GEMMA3_4B_MODEL_FILE", "gemma-3-4b-it-qat-UD-Q4_K_XL.gguf") GEMMA3_4B_MODEL_FOLDER = get_or_create_env_var("GEMMA3_4B_MODEL_FOLDER", "model/gemma3_4b") GPT_OSS_REPO_ID = get_or_create_env_var("GPT_OSS_REPO_ID", "unsloth/gpt-oss-20b-GGUF") GPT_OSS_REPO_TRANSFORMERS_ID = get_or_create_env_var("GPT_OSS_REPO_TRANSFORMERS_ID", "unsloth/gpt-oss-20b-unsloth-bnb-4bit") if USE_LLAMA_CPP == "False": GPT_OSS_REPO_ID = GPT_OSS_REPO_TRANSFORMERS_ID GPT_OSS_MODEL_FILE = get_or_create_env_var("GPT_OSS_MODEL_FILE", "gpt-oss-20b-F16.gguf") GPT_OSS_MODEL_FOLDER = get_or_create_env_var("GPT_OSS_MODEL_FOLDER", "model/gpt_oss") USE_SPECULATIVE_DECODING = get_or_create_env_var("USE_SPECULATIVE_DECODING", "False") ASSISTANT_MODEL = get_or_create_env_var("ASSISTANT_MODEL", "") if CHOSEN_LOCAL_MODEL_TYPE == "Gemma 3 4B": ASSISTANT_MODEL = get_or_create_env_var("ASSISTANT_MODEL", "unsloth/gemma-3-270m-it") elif CHOSEN_LOCAL_MODEL_TYPE == "Qwen 3 4B": ASSISTANT_MODEL = get_or_create_env_var("ASSISTANT_MODEL", "unsloth/Qwen3-0.6B") DRAFT_MODEL_LOC = get_or_create_env_var("DRAFT_MODEL_LOC", ".cache/llama.cpp/") GEMMA3_DRAFT_MODEL_LOC = get_or_create_env_var("GEMMA3_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "unsloth_gemma-3-270m-it-qat-GGUF_gemma-3-270m-it-qat-F16.gguf") GEMMA3_4B_DRAFT_MODEL_LOC = get_or_create_env_var("GEMMA3_4B_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "unsloth_gemma-3-4b-it-qat-GGUF_gemma-3-4b-it-qat-Q4_K_M.gguf") QWEN3_4B_REPO_ID = get_or_create_env_var("QWEN3_4B_REPO_ID", "unsloth/Qwen3-4B-Instruct-2507-GGUF") QWEN3_4B_REPO_TRANSFORMERS_ID = get_or_create_env_var("QWEN3_4B_REPO_TRANSFORMERS_ID", "unsloth/Qwen3-4B-unsloth-bnb-4bit") if USE_LLAMA_CPP == "False": QWEN3_4B_REPO_ID = QWEN3_4B_REPO_TRANSFORMERS_ID QWEN3_4B_MODEL_FILE = get_or_create_env_var("QWEN3_4B_MODEL_FILE", "Qwen3-4B-Instruct-2507-UD-Q4_K_XL.gguf") QWEN3_4B_MODEL_FOLDER = get_or_create_env_var("QWEN3_4B_MODEL_FOLDER", "model/qwen") QWEN3_DRAFT_MODEL_LOC = get_or_create_env_var("QWEN3_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "Qwen3-0.6B-Q8_0.gguf") QWEN3_4B_DRAFT_MODEL_LOC = get_or_create_env_var("QWEN3_4B_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "Qwen3-4B-Instruct-2507-UD-Q4_K_XL.gguf") GRANITE_4_TINY_REPO_ID = get_or_create_env_var("GRANITE_4_TINY_REPO_ID", "unsloth/granite-4.0-h-tiny-GGUF") GRANITE_4_TINY_MODEL_FILE = get_or_create_env_var("GRANITE_4_TINY_MODEL_FILE", "granite-4.0-h-tiny-UD-Q4_K_XL.gguf") GRANITE_4_TINY_MODEL_FOLDER = get_or_create_env_var("GRANITE_4_TINY_MODEL_FOLDER", "model/granite") GRANITE_4_3B_REPO_ID = get_or_create_env_var("GRANITE_4_3B_REPO_ID", "unsloth/granite-4.0-h-micro-GGUF") GRANITE_4_3B_MODEL_FILE = get_or_create_env_var("GRANITE_4_3B_MODEL_FILE", "granite-4.0-h-micro-UD-Q4_K_XL.gguf") GRANITE_4_3B_MODEL_FOLDER = get_or_create_env_var("GRANITE_4_3B_MODEL_FOLDER", "model/granite") if CHOSEN_LOCAL_MODEL_TYPE == "Gemma 2b": LOCAL_REPO_ID = GEMMA2_REPO_ID LOCAL_MODEL_FILE = GEMMA2_MODEL_FILE LOCAL_MODEL_FOLDER = GEMMA2_MODEL_FOLDER elif CHOSEN_LOCAL_MODEL_TYPE == "Gemma 3 4B": LOCAL_REPO_ID = GEMMA3_4B_REPO_ID LOCAL_MODEL_FILE = GEMMA3_4B_MODEL_FILE LOCAL_MODEL_FOLDER = GEMMA3_4B_MODEL_FOLDER elif CHOSEN_LOCAL_MODEL_TYPE == "Qwen 3 4B": LOCAL_REPO_ID = QWEN3_4B_REPO_ID LOCAL_MODEL_FILE = QWEN3_4B_MODEL_FILE LOCAL_MODEL_FOLDER = QWEN3_4B_MODEL_FOLDER elif CHOSEN_LOCAL_MODEL_TYPE == "gpt-oss-20b": LOCAL_REPO_ID = GPT_OSS_REPO_ID LOCAL_MODEL_FILE = GPT_OSS_MODEL_FILE LOCAL_MODEL_FOLDER = GPT_OSS_MODEL_FOLDER elif CHOSEN_LOCAL_MODEL_TYPE == "Granite 4 7B": LOCAL_REPO_ID = GRANITE_4_TINY_REPO_ID LOCAL_MODEL_FILE = GRANITE_4_TINY_MODEL_FILE LOCAL_MODEL_FOLDER = GRANITE_4_TINY_MODEL_FOLDER elif CHOSEN_LOCAL_MODEL_TYPE == "Granite 4 3B": LOCAL_REPO_ID = GRANITE_4_3B_REPO_ID LOCAL_MODEL_FILE = GRANITE_4_3B_MODEL_FILE LOCAL_MODEL_FOLDER = GRANITE_4_3B_MODEL_FOLDER elif not CHOSEN_LOCAL_MODEL_TYPE: LOCAL_REPO_ID = "" LOCAL_MODEL_FILE = "" LOCAL_MODEL_FOLDER = "" LLM_MAX_GPU_LAYERS = int(get_or_create_env_var('LLM_MAX_GPU_LAYERS','-1')) # Maximum possible LLM_TEMPERATURE = float(get_or_create_env_var('LLM_TEMPERATURE', '0.6')) LLM_TOP_K = int(get_or_create_env_var('LLM_TOP_K','64')) # https://docs.unsloth.ai/basics/gemma-3-how-to-run-and-fine-tune LLM_MIN_P = float(get_or_create_env_var('LLM_MIN_P', '0')) LLM_TOP_P = float(get_or_create_env_var('LLM_TOP_P', '0.95')) LLM_REPETITION_PENALTY = float(get_or_create_env_var('LLM_REPETITION_PENALTY', '1.0')) LLM_LAST_N_TOKENS = int(get_or_create_env_var('LLM_LAST_N_TOKENS', '512')) LLM_MAX_NEW_TOKENS = int(get_or_create_env_var('LLM_MAX_NEW_TOKENS', '4096')) LLM_SEED = int(get_or_create_env_var('LLM_SEED', '42')) LLM_RESET = get_or_create_env_var('LLM_RESET', 'False') LLM_STREAM = get_or_create_env_var('LLM_STREAM', 'True') LLM_THREADS = int(get_or_create_env_var('LLM_THREADS', '-1')) LLM_BATCH_SIZE = int(get_or_create_env_var('LLM_BATCH_SIZE', '512')) LLM_CONTEXT_LENGTH = int(get_or_create_env_var('LLM_CONTEXT_LENGTH', '32768')) LLM_SAMPLE = get_or_create_env_var('LLM_SAMPLE', 'True') LLM_STOP_STRINGS = get_or_create_env_var('LLM_STOP_STRINGS', r"['\n\n\n\n\n\n']") MULTIMODAL_PROMPT_FORMAT = get_or_create_env_var('MULTIMODAL_PROMPT_FORMAT', 'False') SPECULATIVE_DECODING = get_or_create_env_var('SPECULATIVE_DECODING', 'False') NUM_PRED_TOKENS = int(get_or_create_env_var('NUM_PRED_TOKENS', '2')) KV_QUANT_LEVEL = get_or_create_env_var('KV_QUANT_LEVEL', '') # 2 = q4_0, 8 = q8_0, 4 = fp16 if not KV_QUANT_LEVEL: KV_QUANT_LEVEL = None else: KV_QUANT_LEVEL = int(KV_QUANT_LEVEL) # If you are using e.g. gpt-oss, you can add a reasoning suffix to set reasoning level, or turn it off in the case of Qwen 3 4B if CHOSEN_LOCAL_MODEL_TYPE == "gpt-oss-20b": REASONING_SUFFIX = get_or_create_env_var('REASONING_SUFFIX', 'Reasoning: low') elif CHOSEN_LOCAL_MODEL_TYPE == "Qwen 3 4B" and USE_LLAMA_CPP == "False": REASONING_SUFFIX = get_or_create_env_var('REASONING_SUFFIX', '/nothink') else: REASONING_SUFFIX = get_or_create_env_var('REASONING_SUFFIX', '') # Transformers variables COMPILE_TRANSFORMERS = get_or_create_env_var('COMPILE_TRANSFORMERS', 'False') # Whether to compile transformers models USE_BITSANDBYTES = get_or_create_env_var('USE_BITSANDBYTES', 'True') # Whether to use bitsandbytes for quantization COMPILE_MODE = get_or_create_env_var('COMPILE_MODE', 'reduce-overhead') # alternatively 'max-autotune' MODEL_DTYPE = get_or_create_env_var('MODEL_DTYPE', 'bfloat16') # alternatively 'bfloat16' INT8_WITH_OFFLOAD_TO_CPU = get_or_create_env_var('INT8_WITH_OFFLOAD_TO_CPU', 'False') # Whether to offload to CPU ### # Gradio app variables ### # Get some environment variables and Launch the Gradio app COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0') RUN_DIRECT_MODE = get_or_create_env_var('RUN_DIRECT_MODE', '0') MAX_QUEUE_SIZE = int(get_or_create_env_var('MAX_QUEUE_SIZE', '5')) MAX_FILE_SIZE = get_or_create_env_var('MAX_FILE_SIZE', '250mb') GRADIO_SERVER_PORT = int(get_or_create_env_var('GRADIO_SERVER_PORT', '7860')) ROOT_PATH = get_or_create_env_var('ROOT_PATH', '') DEFAULT_CONCURRENCY_LIMIT = get_or_create_env_var('DEFAULT_CONCURRENCY_LIMIT', '3') GET_DEFAULT_ALLOW_LIST = get_or_create_env_var('GET_DEFAULT_ALLOW_LIST', '') ALLOW_LIST_PATH = get_or_create_env_var('ALLOW_LIST_PATH', '') # config/default_allow_list.csv S3_ALLOW_LIST_PATH = get_or_create_env_var('S3_ALLOW_LIST_PATH', '') # default_allow_list.csv # This is a path within the named S3 bucket if ALLOW_LIST_PATH: OUTPUT_ALLOW_LIST_PATH = ALLOW_LIST_PATH else: OUTPUT_ALLOW_LIST_PATH = 'config/default_allow_list.csv' FILE_INPUT_HEIGHT = int(get_or_create_env_var('FILE_INPUT_HEIGHT', '125')) SHOW_EXAMPLES = get_or_create_env_var('SHOW_EXAMPLES', 'True') ### # COST CODE OPTIONS ### SHOW_COSTS = get_or_create_env_var('SHOW_COSTS', 'False') GET_COST_CODES = get_or_create_env_var('GET_COST_CODES', 'False') DEFAULT_COST_CODE = get_or_create_env_var('DEFAULT_COST_CODE', '') COST_CODES_PATH = get_or_create_env_var('COST_CODES_PATH', '') # 'config/COST_CENTRES.csv' # file should be a csv file with a single table in it that has two columns with a header. First column should contain cost codes, second column should contain a name or description for the cost code S3_COST_CODES_PATH = get_or_create_env_var('S3_COST_CODES_PATH', '') # COST_CENTRES.csv # This is a path within the DOCUMENT_REDACTION_BUCKET # A default path in case s3 cost code location is provided but no local cost code location given if COST_CODES_PATH: OUTPUT_COST_CODES_PATH = COST_CODES_PATH else: OUTPUT_COST_CODES_PATH = 'config/cost_codes.csv' ENFORCE_COST_CODES = get_or_create_env_var('ENFORCE_COST_CODES', 'False') # If you have cost codes listed, is it compulsory to choose one before redacting? if ENFORCE_COST_CODES == 'True': GET_COST_CODES = 'True' ### # VALIDATE FOLDERS AND CONFIG OPTIONS ### def ensure_folder_exists(output_folder:str): """Checks if the specified folder exists, creates it if not.""" if not os.path.exists(output_folder): # Create the folder if it doesn't exist os.makedirs(output_folder, exist_ok=True) print(f"Created the {output_folder} folder.") else: pass #print(f"The {output_folder} folder already exists.") def _get_env_list(env_var_name: str, strip_strings:bool=True) -> List[str]: """Parses a comma-separated environment variable into a list of strings.""" value = env_var_name[1:-1].strip().replace('\"', '').replace("\'","") if not value: return [] # Split by comma and filter out any empty strings that might result from extra commas if strip_strings: return [s.strip() for s in value.split(',') if s.strip()] else: return [codecs.decode(s, 'unicode_escape') for s in value.split(',') if s] # Convert string environment variables to string or list if SAVE_LOGS_TO_CSV == "True": SAVE_LOGS_TO_CSV = True else: SAVE_LOGS_TO_CSV = False if SAVE_LOGS_TO_DYNAMODB == "True": SAVE_LOGS_TO_DYNAMODB = True else: SAVE_LOGS_TO_DYNAMODB = False if CSV_ACCESS_LOG_HEADERS: CSV_ACCESS_LOG_HEADERS = _get_env_list(CSV_ACCESS_LOG_HEADERS) if CSV_FEEDBACK_LOG_HEADERS: CSV_FEEDBACK_LOG_HEADERS = _get_env_list(CSV_FEEDBACK_LOG_HEADERS) if CSV_USAGE_LOG_HEADERS: CSV_USAGE_LOG_HEADERS = _get_env_list(CSV_USAGE_LOG_HEADERS) if DYNAMODB_ACCESS_LOG_HEADERS: DYNAMODB_ACCESS_LOG_HEADERS = _get_env_list(DYNAMODB_ACCESS_LOG_HEADERS) if DYNAMODB_FEEDBACK_LOG_HEADERS: DYNAMODB_FEEDBACK_LOG_HEADERS = _get_env_list(DYNAMODB_FEEDBACK_LOG_HEADERS) if DYNAMODB_USAGE_LOG_HEADERS: DYNAMODB_USAGE_LOG_HEADERS = _get_env_list(DYNAMODB_USAGE_LOG_HEADERS)