seanpedrickcase's picture
Minor prompt improvements. Bedrock client and keys should now be correctly passed to validation function
70cb346
import os
import tempfile
import socket
import logging
import codecs
from typing import List
from datetime import datetime
from dotenv import load_dotenv
today_rev = datetime.now().strftime("%Y%m%d")
HOST_NAME = socket.gethostname()
# Set or retrieve configuration variables for the redaction app
def get_or_create_env_var(var_name:str, default_value:str, print_val:bool=False):
'''
Get an environmental variable, and set it to a default value if it doesn't exist
'''
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set the environment variable to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
if print_val == True:
print(f'The value of {var_name} is {value}')
return value
def add_folder_to_path(folder_path: str):
'''
Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist. Function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run)
'''
if os.path.exists(folder_path) and os.path.isdir(folder_path):
print(folder_path, "folder exists.")
# Resolve relative path to absolute path
absolute_path = os.path.abspath(folder_path)
current_path = os.environ['PATH']
if absolute_path not in current_path.split(os.pathsep):
full_path_extension = absolute_path + os.pathsep + current_path
os.environ['PATH'] = full_path_extension
#print(f"Updated PATH with: ", full_path_extension)
else:
print(f"Directory {folder_path} already exists in PATH.")
else:
print(f"Folder not found at {folder_path} - not added to PATH")
###
# LOAD CONFIG FROM ENV FILE
###
CONFIG_FOLDER = get_or_create_env_var('CONFIG_FOLDER', 'config/')
# If you have an aws_config env file in the config folder, you can load in app variables this way, e.g. 'config/app_config.env'
APP_CONFIG_PATH = get_or_create_env_var('APP_CONFIG_PATH', CONFIG_FOLDER + 'app_config.env') # e.g. config/app_config.env
if APP_CONFIG_PATH:
if os.path.exists(APP_CONFIG_PATH):
print(f"Loading app variables from config file {APP_CONFIG_PATH}")
load_dotenv(APP_CONFIG_PATH)
else: print("App config file not found at location:", APP_CONFIG_PATH)
###
# AWS OPTIONS
###
# If you have an aws_config env file in the config folder, you can load in AWS keys this way, e.g. 'env/aws_config.env'
AWS_CONFIG_PATH = get_or_create_env_var('AWS_CONFIG_PATH', '') # e.g. config/aws_config.env
if AWS_CONFIG_PATH:
if os.path.exists(AWS_CONFIG_PATH):
print(f"Loading AWS variables from config file {AWS_CONFIG_PATH}")
load_dotenv(AWS_CONFIG_PATH)
else: print("AWS config file not found at location:", AWS_CONFIG_PATH)
RUN_AWS_FUNCTIONS = get_or_create_env_var("RUN_AWS_FUNCTIONS", "0")
AWS_REGION = get_or_create_env_var('AWS_REGION', '')
AWS_CLIENT_ID = get_or_create_env_var('AWS_CLIENT_ID', '')
AWS_CLIENT_SECRET = get_or_create_env_var('AWS_CLIENT_SECRET', '')
AWS_USER_POOL_ID = get_or_create_env_var('AWS_USER_POOL_ID', '')
AWS_ACCESS_KEY = get_or_create_env_var('AWS_ACCESS_KEY', '')
#if AWS_ACCESS_KEY: print(f'AWS_ACCESS_KEY found in environment variables')
AWS_SECRET_KEY = get_or_create_env_var('AWS_SECRET_KEY', '')
#if AWS_SECRET_KEY: print(f'AWS_SECRET_KEY found in environment variables')
# Should the app prioritise using AWS SSO over using API keys stored in environment variables/secrets (defaults to yes)
PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS = get_or_create_env_var('PRIORITISE_SSO_OVER_AWS_ENV_ACCESS_KEYS', '1')
S3_LOG_BUCKET = get_or_create_env_var('S3_LOG_BUCKET', '')
# Custom headers e.g. if routing traffic through Cloudfront
# Retrieving or setting CUSTOM_HEADER
CUSTOM_HEADER = get_or_create_env_var('CUSTOM_HEADER', '')
# Retrieving or setting CUSTOM_HEADER_VALUE
CUSTOM_HEADER_VALUE = get_or_create_env_var('CUSTOM_HEADER_VALUE', '')
###
# File I/O
###
SESSION_OUTPUT_FOLDER = get_or_create_env_var('SESSION_OUTPUT_FOLDER', 'False') # i.e. do you want your input and output folders saved within a subfolder based on session hash value within output/input folders
OUTPUT_FOLDER = get_or_create_env_var('GRADIO_OUTPUT_FOLDER', 'output/') # 'output/'
INPUT_FOLDER = get_or_create_env_var('GRADIO_INPUT_FOLDER', 'input/') # 'input/'
# Allow for files to be saved in a temporary folder for increased security in some instances
if OUTPUT_FOLDER == "TEMP" or INPUT_FOLDER == "TEMP":
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
print(f'Temporary directory created at: {temp_dir}')
if OUTPUT_FOLDER == "TEMP": OUTPUT_FOLDER = temp_dir + "/"
if INPUT_FOLDER == "TEMP": INPUT_FOLDER = temp_dir + "/"
GRADIO_TEMP_DIR = get_or_create_env_var('GRADIO_TEMP_DIR', 'tmp/gradio_tmp/') # Default Gradio temp folder
MPLCONFIGDIR = get_or_create_env_var('MPLCONFIGDIR', 'tmp/matplotlib_cache/') # Matplotlib cache folder
###
# LOGGING OPTIONS
###
# By default, logs are put into a subfolder of today's date and the host name of the instance running the app. This is to avoid at all possible the possibility of log files from one instance overwriting the logs of another instance on S3. If running the app on one system always, or just locally, it is not necessary to make the log folders so specific.
# Another way to address this issue would be to write logs to another type of storage, e.g. database such as dynamodb. I may look into this in future.
SAVE_LOGS_TO_CSV = get_or_create_env_var('SAVE_LOGS_TO_CSV', 'True')
USE_LOG_SUBFOLDERS = get_or_create_env_var('USE_LOG_SUBFOLDERS', 'True')
FEEDBACK_LOGS_FOLDER = get_or_create_env_var('FEEDBACK_LOGS_FOLDER', 'feedback/')
ACCESS_LOGS_FOLDER = get_or_create_env_var('ACCESS_LOGS_FOLDER', 'logs/')
USAGE_LOGS_FOLDER = get_or_create_env_var('USAGE_LOGS_FOLDER', 'usage/')
if USE_LOG_SUBFOLDERS == "True":
day_log_subfolder = today_rev + '/'
host_name_subfolder = HOST_NAME + '/'
full_log_subfolder = day_log_subfolder + host_name_subfolder
FEEDBACK_LOGS_FOLDER = FEEDBACK_LOGS_FOLDER + full_log_subfolder
ACCESS_LOGS_FOLDER = ACCESS_LOGS_FOLDER + full_log_subfolder
USAGE_LOGS_FOLDER = USAGE_LOGS_FOLDER + full_log_subfolder
S3_FEEDBACK_LOGS_FOLDER = get_or_create_env_var('S3_FEEDBACK_LOGS_FOLDER', 'feedback/' + full_log_subfolder)
S3_ACCESS_LOGS_FOLDER = get_or_create_env_var('S3_ACCESS_LOGS_FOLDER', 'logs/' + full_log_subfolder)
S3_USAGE_LOGS_FOLDER = get_or_create_env_var('S3_USAGE_LOGS_FOLDER', 'usage/' + full_log_subfolder)
LOG_FILE_NAME = get_or_create_env_var('LOG_FILE_NAME', 'log.csv')
USAGE_LOG_FILE_NAME = get_or_create_env_var('USAGE_LOG_FILE_NAME', LOG_FILE_NAME)
FEEDBACK_LOG_FILE_NAME = get_or_create_env_var('FEEDBACK_LOG_FILE_NAME', LOG_FILE_NAME)
# Should the redacted file name be included in the logs? In some instances, the names of the files themselves could be sensitive, and should not be disclosed beyond the app. So, by default this is false.
DISPLAY_FILE_NAMES_IN_LOGS = get_or_create_env_var('DISPLAY_FILE_NAMES_IN_LOGS', 'False')
# Further customisation options for CSV logs
CSV_ACCESS_LOG_HEADERS = get_or_create_env_var('CSV_ACCESS_LOG_HEADERS', '') # If blank, uses component labels
CSV_FEEDBACK_LOG_HEADERS = get_or_create_env_var('CSV_FEEDBACK_LOG_HEADERS', '') # If blank, uses component labels
CSV_USAGE_LOG_HEADERS = get_or_create_env_var('CSV_USAGE_LOG_HEADERS', '') # If blank, uses component labels
### DYNAMODB logs. Whether to save to DynamoDB, and the headers of the table
SAVE_LOGS_TO_DYNAMODB = get_or_create_env_var('SAVE_LOGS_TO_DYNAMODB', 'False')
ACCESS_LOG_DYNAMODB_TABLE_NAME = get_or_create_env_var('ACCESS_LOG_DYNAMODB_TABLE_NAME', 'llm_topic_model_access_log')
DYNAMODB_ACCESS_LOG_HEADERS = get_or_create_env_var('DYNAMODB_ACCESS_LOG_HEADERS', '')
FEEDBACK_LOG_DYNAMODB_TABLE_NAME = get_or_create_env_var('FEEDBACK_LOG_DYNAMODB_TABLE_NAME', 'llm_topic_model_feedback')
DYNAMODB_FEEDBACK_LOG_HEADERS = get_or_create_env_var('DYNAMODB_FEEDBACK_LOG_HEADERS', '')
USAGE_LOG_DYNAMODB_TABLE_NAME = get_or_create_env_var('USAGE_LOG_DYNAMODB_TABLE_NAME', 'llm_topic_model_usage')
DYNAMODB_USAGE_LOG_HEADERS = get_or_create_env_var('DYNAMODB_USAGE_LOG_HEADERS', '')
# Report logging to console?
LOGGING = get_or_create_env_var('LOGGING', 'False')
if LOGGING == 'True':
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
###
# App run variables
###
OUTPUT_DEBUG_FILES = get_or_create_env_var('OUTPUT_DEBUG_FILES', 'False') # Whether to output debug files
SHOW_ADDITIONAL_INSTRUCTION_TEXTBOXES = get_or_create_env_var('SHOW_ADDITIONAL_INSTRUCTION_TEXTBOXES', 'True') # Whether to show additional instruction textboxes in the GUI
TIMEOUT_WAIT = int(get_or_create_env_var('TIMEOUT_WAIT', '30')) # Maximum number of seconds to wait for a response from the LLM
NUMBER_OF_RETRY_ATTEMPTS = int(get_or_create_env_var('NUMBER_OF_RETRY_ATTEMPTS', '5')) # Maximum number of times to retry a request to the LLM
# Try up to 3 times to get a valid markdown table response with LLM calls, otherwise retry with temperature changed
MAX_OUTPUT_VALIDATION_ATTEMPTS = int(get_or_create_env_var('MAX_OUTPUT_VALIDATION_ATTEMPTS', '3'))
ENABLE_VALIDATION = get_or_create_env_var('ENABLE_VALIDATION', 'False') # Whether to run validation loop after initial topic extraction
MAX_TIME_FOR_LOOP = int(get_or_create_env_var('MAX_TIME_FOR_LOOP', '99999')) # Maximum number of seconds to run the loop for before breaking (to run again, this is to avoid timeouts with some AWS services if deployed there)
MAX_COMMENT_CHARS = int(get_or_create_env_var('MAX_COMMENT_CHARS', '14000')) # Maximum number of characters in a comment
MAX_ROWS = int(get_or_create_env_var('MAX_ROWS', '5000')) # Maximum number of rows to process
MAX_GROUPS = int(get_or_create_env_var('MAX_GROUPS', '99')) # Maximum number of groups to process
BATCH_SIZE_DEFAULT = int(get_or_create_env_var('BATCH_SIZE_DEFAULT', '5')) # Default batch size for LLM calls
MAXIMUM_ZERO_SHOT_TOPICS = int(get_or_create_env_var('MAXIMUM_ZERO_SHOT_TOPICS', '120')) # Maximum number of zero shot topics to process
MAX_SPACES_GPU_RUN_TIME = int(get_or_create_env_var('MAX_SPACES_GPU_RUN_TIME', '240')) # Maximum number of seconds to run on GPU on Hugging Face Spaces
DEDUPLICATION_THRESHOLD = int(get_or_create_env_var('DEDUPLICATION_THRESHOLD', '90')) # Deduplication threshold for topic summary tables
###
# Model options
###
RUN_LOCAL_MODEL = get_or_create_env_var("RUN_LOCAL_MODEL", "0")
RUN_AWS_BEDROCK_MODELS = get_or_create_env_var("RUN_AWS_BEDROCK_MODELS", "1")
RUN_GEMINI_MODELS = get_or_create_env_var("RUN_GEMINI_MODELS", "1")
GEMINI_API_KEY = get_or_create_env_var('GEMINI_API_KEY', '')
# Azure/OpenAI AI Inference settings
RUN_AZURE_MODELS = get_or_create_env_var("RUN_AZURE_MODELS", "1")
AZURE_OPENAI_API_KEY = get_or_create_env_var('AZURE_OPENAI_API_KEY', '')
AZURE_OPENAI_INFERENCE_ENDPOINT = get_or_create_env_var('AZURE_OPENAI_INFERENCE_ENDPOINT', '')
# Build up options for models
model_full_names = list()
model_short_names = list()
model_source = list()
CHOSEN_LOCAL_MODEL_TYPE = get_or_create_env_var("CHOSEN_LOCAL_MODEL_TYPE", "Qwen 3 4B") # Gemma 3 1B # "Gemma 2b" # "Gemma 3 4B"
if RUN_LOCAL_MODEL == "1" and CHOSEN_LOCAL_MODEL_TYPE:
model_full_names.append(CHOSEN_LOCAL_MODEL_TYPE)
model_short_names.append(CHOSEN_LOCAL_MODEL_TYPE)
model_source.append("Local")
if RUN_AWS_BEDROCK_MODELS == "1":
amazon_models = ["anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-7-sonnet-20250219-v1:0", "anthropic.claude-sonnet-4-5-20250929-v1:0", "amazon.nova-micro-v1:0", "amazon.nova-lite-v1:0", "amazon.nova-pro-v1:0", "deepseek.v3-v1:0", "openai.gpt-oss-20b-1:0", "openai.gpt-oss-120b-1:0"]
model_full_names.extend(amazon_models)
model_short_names.extend(["haiku", "sonnet_3_7", "sonnet_4_5", "nova_micro", "nova_lite", "nova_pro", "deepseek_v3", "gpt_oss_20b_aws", "gpt_oss_120b_aws"])
model_source.extend(["AWS"] * len(amazon_models))
if RUN_GEMINI_MODELS == "1":
gemini_models = ["gemini-2.5-flash-lite", "gemini-2.5-flash", "gemini-2.5-pro"]
model_full_names.extend(gemini_models)
model_short_names.extend(["gemini_flash_lite_2.5", "gemini_flash_2.5", "gemini_pro"])
model_source.extend(["Gemini"] * len(gemini_models))
# Register Azure/OpenAI AI models (model names must match your Azure/OpenAI deployments)
if RUN_AZURE_MODELS == "1":
# Example deployments; adjust to the deployments you actually create in Azure/OpenAI
azure_models = ["gpt-5-mini", "gpt-4o-mini"]
model_full_names.extend(azure_models)
model_short_names.extend(["gpt-5-mini", "gpt-4o-mini"])
model_source.extend(["Azure/OpenAI"] * len(azure_models))
model_name_map = {
full: {"short_name": short, "source": source}
for full, short, source in zip(model_full_names, model_short_names, model_source)
}
if RUN_LOCAL_MODEL == "1": default_model_choice = CHOSEN_LOCAL_MODEL_TYPE
elif RUN_AWS_FUNCTIONS == "1": default_model_choice = amazon_models[0]
else: default_model_choice = gemini_models[0]
default_model_source = model_name_map[default_model_choice]["source"]
model_sources = list(set([model_name_map[model]["source"] for model in model_full_names]))
def update_model_choice_config(default_model_source, model_name_map):
# Filter models by source and return the first matching model name
matching_models = [model_name for model_name, model_info in model_name_map.items()
if model_info["source"] == default_model_source]
output_model = matching_models[0] if matching_models else model_full_names[0]
return output_model, matching_models
default_model_choice, default_source_models = update_model_choice_config(default_model_source, model_name_map)
#print("model_name_map:", model_name_map)
# HF token may or may not be needed for downloading models from Hugging Face
HF_TOKEN = get_or_create_env_var('HF_TOKEN', '')
LOAD_LOCAL_MODEL_AT_START = get_or_create_env_var('LOAD_LOCAL_MODEL_AT_START', 'False')
# If you are using a system with low VRAM, you can set this to True to reduce the memory requirements
LOW_VRAM_SYSTEM = get_or_create_env_var('LOW_VRAM_SYSTEM', 'False')
if LOW_VRAM_SYSTEM == 'True':
print("Using settings for low VRAM system")
USE_LLAMA_CPP = get_or_create_env_var('USE_LLAMA_CPP', 'True')
LLM_MAX_NEW_TOKENS = int(get_or_create_env_var('LLM_MAX_NEW_TOKENS', '4096'))
LLM_CONTEXT_LENGTH = int(get_or_create_env_var('LLM_CONTEXT_LENGTH', '16384'))
LLM_BATCH_SIZE = int(get_or_create_env_var('LLM_BATCH_SIZE', '512'))
KV_QUANT_LEVEL = int(get_or_create_env_var('KV_QUANT_LEVEL', '2')) # 2 = q4_0, 8 = q8_0, 4 = fp16
USE_LLAMA_CPP = get_or_create_env_var('USE_LLAMA_CPP', 'True') # Llama.cpp or transformers with unsloth
GEMMA2_REPO_ID = get_or_create_env_var("GEMMA2_2B_REPO_ID", "unsloth/gemma-2-it-GGUF")
GEMMA2_REPO_TRANSFORMERS_ID = get_or_create_env_var("GEMMA2_2B_REPO_TRANSFORMERS_ID", "unsloth/gemma-2-2b-it-bnb-4bit")
if USE_LLAMA_CPP == "False": GEMMA2_REPO_ID = GEMMA2_REPO_TRANSFORMERS_ID
GEMMA2_MODEL_FILE = get_or_create_env_var("GEMMA2_2B_MODEL_FILE", "gemma-2-2b-it.q8_0.gguf")
GEMMA2_MODEL_FOLDER = get_or_create_env_var("GEMMA2_2B_MODEL_FOLDER", "model/gemma")
GEMMA3_4B_REPO_ID = get_or_create_env_var("GEMMA3_4B_REPO_ID", "unsloth/gemma-3-4b-it-qat-GGUF")
GEMMA3_4B_REPO_TRANSFORMERS_ID = get_or_create_env_var("GEMMA3_4B_REPO_TRANSFORMERS_ID", "unsloth/gemma-3-4b-it-qat" ) # "google/gemma-3-4b-it" # "unsloth/gemma-3-4b-it-qat-unsloth-bnb-4bit" # unsloth/gemma-3-4b-it-qat
if USE_LLAMA_CPP == "False":
GEMMA3_4B_REPO_ID = GEMMA3_4B_REPO_TRANSFORMERS_ID
GEMMA3_4B_MODEL_FILE = get_or_create_env_var("GEMMA3_4B_MODEL_FILE", "gemma-3-4b-it-qat-UD-Q4_K_XL.gguf")
GEMMA3_4B_MODEL_FOLDER = get_or_create_env_var("GEMMA3_4B_MODEL_FOLDER", "model/gemma3_4b")
GPT_OSS_REPO_ID = get_or_create_env_var("GPT_OSS_REPO_ID", "unsloth/gpt-oss-20b-GGUF")
GPT_OSS_REPO_TRANSFORMERS_ID = get_or_create_env_var("GPT_OSS_REPO_TRANSFORMERS_ID", "unsloth/gpt-oss-20b-unsloth-bnb-4bit")
if USE_LLAMA_CPP == "False": GPT_OSS_REPO_ID = GPT_OSS_REPO_TRANSFORMERS_ID
GPT_OSS_MODEL_FILE = get_or_create_env_var("GPT_OSS_MODEL_FILE", "gpt-oss-20b-F16.gguf")
GPT_OSS_MODEL_FOLDER = get_or_create_env_var("GPT_OSS_MODEL_FOLDER", "model/gpt_oss")
USE_SPECULATIVE_DECODING = get_or_create_env_var("USE_SPECULATIVE_DECODING", "False")
ASSISTANT_MODEL = get_or_create_env_var("ASSISTANT_MODEL", "")
if CHOSEN_LOCAL_MODEL_TYPE == "Gemma 3 4B": ASSISTANT_MODEL = get_or_create_env_var("ASSISTANT_MODEL", "unsloth/gemma-3-270m-it")
elif CHOSEN_LOCAL_MODEL_TYPE == "Qwen 3 4B": ASSISTANT_MODEL = get_or_create_env_var("ASSISTANT_MODEL", "unsloth/Qwen3-0.6B")
DRAFT_MODEL_LOC = get_or_create_env_var("DRAFT_MODEL_LOC", ".cache/llama.cpp/")
GEMMA3_DRAFT_MODEL_LOC = get_or_create_env_var("GEMMA3_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "unsloth_gemma-3-270m-it-qat-GGUF_gemma-3-270m-it-qat-F16.gguf")
GEMMA3_4B_DRAFT_MODEL_LOC = get_or_create_env_var("GEMMA3_4B_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "unsloth_gemma-3-4b-it-qat-GGUF_gemma-3-4b-it-qat-Q4_K_M.gguf")
QWEN3_4B_REPO_ID = get_or_create_env_var("QWEN3_4B_REPO_ID", "unsloth/Qwen3-4B-Instruct-2507-GGUF")
QWEN3_4B_REPO_TRANSFORMERS_ID = get_or_create_env_var("QWEN3_4B_REPO_TRANSFORMERS_ID", "unsloth/Qwen3-4B-unsloth-bnb-4bit")
if USE_LLAMA_CPP == "False": QWEN3_4B_REPO_ID = QWEN3_4B_REPO_TRANSFORMERS_ID
QWEN3_4B_MODEL_FILE = get_or_create_env_var("QWEN3_4B_MODEL_FILE", "Qwen3-4B-Instruct-2507-UD-Q4_K_XL.gguf")
QWEN3_4B_MODEL_FOLDER = get_or_create_env_var("QWEN3_4B_MODEL_FOLDER", "model/qwen")
QWEN3_DRAFT_MODEL_LOC = get_or_create_env_var("QWEN3_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "Qwen3-0.6B-Q8_0.gguf")
QWEN3_4B_DRAFT_MODEL_LOC = get_or_create_env_var("QWEN3_4B_DRAFT_MODEL_LOC", DRAFT_MODEL_LOC + "Qwen3-4B-Instruct-2507-UD-Q4_K_XL.gguf")
GRANITE_4_TINY_REPO_ID = get_or_create_env_var("GRANITE_4_TINY_REPO_ID", "unsloth/granite-4.0-h-tiny-GGUF")
GRANITE_4_TINY_MODEL_FILE = get_or_create_env_var("GRANITE_4_TINY_MODEL_FILE", "granite-4.0-h-tiny-UD-Q4_K_XL.gguf")
GRANITE_4_TINY_MODEL_FOLDER = get_or_create_env_var("GRANITE_4_TINY_MODEL_FOLDER", "model/granite")
GRANITE_4_3B_REPO_ID = get_or_create_env_var("GRANITE_4_3B_REPO_ID", "unsloth/granite-4.0-h-micro-GGUF")
GRANITE_4_3B_MODEL_FILE = get_or_create_env_var("GRANITE_4_3B_MODEL_FILE", "granite-4.0-h-micro-UD-Q4_K_XL.gguf")
GRANITE_4_3B_MODEL_FOLDER = get_or_create_env_var("GRANITE_4_3B_MODEL_FOLDER", "model/granite")
if CHOSEN_LOCAL_MODEL_TYPE == "Gemma 2b":
LOCAL_REPO_ID = GEMMA2_REPO_ID
LOCAL_MODEL_FILE = GEMMA2_MODEL_FILE
LOCAL_MODEL_FOLDER = GEMMA2_MODEL_FOLDER
elif CHOSEN_LOCAL_MODEL_TYPE == "Gemma 3 4B":
LOCAL_REPO_ID = GEMMA3_4B_REPO_ID
LOCAL_MODEL_FILE = GEMMA3_4B_MODEL_FILE
LOCAL_MODEL_FOLDER = GEMMA3_4B_MODEL_FOLDER
elif CHOSEN_LOCAL_MODEL_TYPE == "Qwen 3 4B":
LOCAL_REPO_ID = QWEN3_4B_REPO_ID
LOCAL_MODEL_FILE = QWEN3_4B_MODEL_FILE
LOCAL_MODEL_FOLDER = QWEN3_4B_MODEL_FOLDER
elif CHOSEN_LOCAL_MODEL_TYPE == "gpt-oss-20b":
LOCAL_REPO_ID = GPT_OSS_REPO_ID
LOCAL_MODEL_FILE = GPT_OSS_MODEL_FILE
LOCAL_MODEL_FOLDER = GPT_OSS_MODEL_FOLDER
elif CHOSEN_LOCAL_MODEL_TYPE == "Granite 4 7B":
LOCAL_REPO_ID = GRANITE_4_TINY_REPO_ID
LOCAL_MODEL_FILE = GRANITE_4_TINY_MODEL_FILE
LOCAL_MODEL_FOLDER = GRANITE_4_TINY_MODEL_FOLDER
elif CHOSEN_LOCAL_MODEL_TYPE == "Granite 4 3B":
LOCAL_REPO_ID = GRANITE_4_3B_REPO_ID
LOCAL_MODEL_FILE = GRANITE_4_3B_MODEL_FILE
LOCAL_MODEL_FOLDER = GRANITE_4_3B_MODEL_FOLDER
elif not CHOSEN_LOCAL_MODEL_TYPE:
LOCAL_REPO_ID = ""
LOCAL_MODEL_FILE = ""
LOCAL_MODEL_FOLDER = ""
LLM_MAX_GPU_LAYERS = int(get_or_create_env_var('LLM_MAX_GPU_LAYERS','-1')) # Maximum possible
LLM_TEMPERATURE = float(get_or_create_env_var('LLM_TEMPERATURE', '0.6'))
LLM_TOP_K = int(get_or_create_env_var('LLM_TOP_K','64')) # https://docs.unsloth.ai/basics/gemma-3-how-to-run-and-fine-tune
LLM_MIN_P = float(get_or_create_env_var('LLM_MIN_P', '0'))
LLM_TOP_P = float(get_or_create_env_var('LLM_TOP_P', '0.95'))
LLM_REPETITION_PENALTY = float(get_or_create_env_var('LLM_REPETITION_PENALTY', '1.0'))
LLM_LAST_N_TOKENS = int(get_or_create_env_var('LLM_LAST_N_TOKENS', '512'))
LLM_MAX_NEW_TOKENS = int(get_or_create_env_var('LLM_MAX_NEW_TOKENS', '4096'))
LLM_SEED = int(get_or_create_env_var('LLM_SEED', '42'))
LLM_RESET = get_or_create_env_var('LLM_RESET', 'False')
LLM_STREAM = get_or_create_env_var('LLM_STREAM', 'True')
LLM_THREADS = int(get_or_create_env_var('LLM_THREADS', '-1'))
LLM_BATCH_SIZE = int(get_or_create_env_var('LLM_BATCH_SIZE', '512'))
LLM_CONTEXT_LENGTH = int(get_or_create_env_var('LLM_CONTEXT_LENGTH', '32768'))
LLM_SAMPLE = get_or_create_env_var('LLM_SAMPLE', 'True')
LLM_STOP_STRINGS = get_or_create_env_var('LLM_STOP_STRINGS', r"['\n\n\n\n\n\n']")
MULTIMODAL_PROMPT_FORMAT = get_or_create_env_var('MULTIMODAL_PROMPT_FORMAT', 'False')
SPECULATIVE_DECODING = get_or_create_env_var('SPECULATIVE_DECODING', 'False')
NUM_PRED_TOKENS = int(get_or_create_env_var('NUM_PRED_TOKENS', '2'))
KV_QUANT_LEVEL = get_or_create_env_var('KV_QUANT_LEVEL', '') # 2 = q4_0, 8 = q8_0, 4 = fp16
if not KV_QUANT_LEVEL: KV_QUANT_LEVEL = None
else: KV_QUANT_LEVEL = int(KV_QUANT_LEVEL)
# If you are using e.g. gpt-oss, you can add a reasoning suffix to set reasoning level, or turn it off in the case of Qwen 3 4B
if CHOSEN_LOCAL_MODEL_TYPE == "gpt-oss-20b": REASONING_SUFFIX = get_or_create_env_var('REASONING_SUFFIX', 'Reasoning: low')
elif CHOSEN_LOCAL_MODEL_TYPE == "Qwen 3 4B" and USE_LLAMA_CPP == "False": REASONING_SUFFIX = get_or_create_env_var('REASONING_SUFFIX', '/nothink')
else: REASONING_SUFFIX = get_or_create_env_var('REASONING_SUFFIX', '')
# Transformers variables
COMPILE_TRANSFORMERS = get_or_create_env_var('COMPILE_TRANSFORMERS', 'False') # Whether to compile transformers models
USE_BITSANDBYTES = get_or_create_env_var('USE_BITSANDBYTES', 'True') # Whether to use bitsandbytes for quantization
COMPILE_MODE = get_or_create_env_var('COMPILE_MODE', 'reduce-overhead') # alternatively 'max-autotune'
MODEL_DTYPE = get_or_create_env_var('MODEL_DTYPE', 'bfloat16') # alternatively 'bfloat16'
INT8_WITH_OFFLOAD_TO_CPU = get_or_create_env_var('INT8_WITH_OFFLOAD_TO_CPU', 'False') # Whether to offload to CPU
###
# Gradio app variables
###
# Get some environment variables and Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
RUN_DIRECT_MODE = get_or_create_env_var('RUN_DIRECT_MODE', '0')
MAX_QUEUE_SIZE = int(get_or_create_env_var('MAX_QUEUE_SIZE', '5'))
MAX_FILE_SIZE = get_or_create_env_var('MAX_FILE_SIZE', '250mb')
GRADIO_SERVER_PORT = int(get_or_create_env_var('GRADIO_SERVER_PORT', '7860'))
ROOT_PATH = get_or_create_env_var('ROOT_PATH', '')
DEFAULT_CONCURRENCY_LIMIT = get_or_create_env_var('DEFAULT_CONCURRENCY_LIMIT', '3')
GET_DEFAULT_ALLOW_LIST = get_or_create_env_var('GET_DEFAULT_ALLOW_LIST', '')
ALLOW_LIST_PATH = get_or_create_env_var('ALLOW_LIST_PATH', '') # config/default_allow_list.csv
S3_ALLOW_LIST_PATH = get_or_create_env_var('S3_ALLOW_LIST_PATH', '') # default_allow_list.csv # This is a path within the named S3 bucket
if ALLOW_LIST_PATH: OUTPUT_ALLOW_LIST_PATH = ALLOW_LIST_PATH
else: OUTPUT_ALLOW_LIST_PATH = 'config/default_allow_list.csv'
FILE_INPUT_HEIGHT = int(get_or_create_env_var('FILE_INPUT_HEIGHT', '125'))
SHOW_EXAMPLES = get_or_create_env_var('SHOW_EXAMPLES', 'True')
###
# COST CODE OPTIONS
###
SHOW_COSTS = get_or_create_env_var('SHOW_COSTS', 'False')
GET_COST_CODES = get_or_create_env_var('GET_COST_CODES', 'False')
DEFAULT_COST_CODE = get_or_create_env_var('DEFAULT_COST_CODE', '')
COST_CODES_PATH = get_or_create_env_var('COST_CODES_PATH', '') # 'config/COST_CENTRES.csv' # file should be a csv file with a single table in it that has two columns with a header. First column should contain cost codes, second column should contain a name or description for the cost code
S3_COST_CODES_PATH = get_or_create_env_var('S3_COST_CODES_PATH', '') # COST_CENTRES.csv # This is a path within the DOCUMENT_REDACTION_BUCKET
# A default path in case s3 cost code location is provided but no local cost code location given
if COST_CODES_PATH: OUTPUT_COST_CODES_PATH = COST_CODES_PATH
else: OUTPUT_COST_CODES_PATH = 'config/cost_codes.csv'
ENFORCE_COST_CODES = get_or_create_env_var('ENFORCE_COST_CODES', 'False') # If you have cost codes listed, is it compulsory to choose one before redacting?
if ENFORCE_COST_CODES == 'True': GET_COST_CODES = 'True'
###
# VALIDATE FOLDERS AND CONFIG OPTIONS
###
def ensure_folder_exists(output_folder:str):
"""Checks if the specified folder exists, creates it if not."""
if not os.path.exists(output_folder):
# Create the folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
print(f"Created the {output_folder} folder.")
else:
pass
#print(f"The {output_folder} folder already exists.")
def _get_env_list(env_var_name: str, strip_strings:bool=True) -> List[str]:
"""Parses a comma-separated environment variable into a list of strings."""
value = env_var_name[1:-1].strip().replace('\"', '').replace("\'","")
if not value:
return []
# Split by comma and filter out any empty strings that might result from extra commas
if strip_strings:
return [s.strip() for s in value.split(',') if s.strip()]
else:
return [codecs.decode(s, 'unicode_escape') for s in value.split(',') if s]
# Convert string environment variables to string or list
if SAVE_LOGS_TO_CSV == "True": SAVE_LOGS_TO_CSV = True
else: SAVE_LOGS_TO_CSV = False
if SAVE_LOGS_TO_DYNAMODB == "True": SAVE_LOGS_TO_DYNAMODB = True
else: SAVE_LOGS_TO_DYNAMODB = False
if CSV_ACCESS_LOG_HEADERS: CSV_ACCESS_LOG_HEADERS = _get_env_list(CSV_ACCESS_LOG_HEADERS)
if CSV_FEEDBACK_LOG_HEADERS: CSV_FEEDBACK_LOG_HEADERS = _get_env_list(CSV_FEEDBACK_LOG_HEADERS)
if CSV_USAGE_LOG_HEADERS: CSV_USAGE_LOG_HEADERS = _get_env_list(CSV_USAGE_LOG_HEADERS)
if DYNAMODB_ACCESS_LOG_HEADERS: DYNAMODB_ACCESS_LOG_HEADERS = _get_env_list(DYNAMODB_ACCESS_LOG_HEADERS)
if DYNAMODB_FEEDBACK_LOG_HEADERS: DYNAMODB_FEEDBACK_LOG_HEADERS = _get_env_list(DYNAMODB_FEEDBACK_LOG_HEADERS)
if DYNAMODB_USAGE_LOG_HEADERS: DYNAMODB_USAGE_LOG_HEADERS = _get_env_list(DYNAMODB_USAGE_LOG_HEADERS)