File size: 9,117 Bytes
9401dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import tempfile
import streamlit as st
import soundfile as sf
import librosa

from yt_dlp import YoutubeDL
from moviepy.editor import VideoFileClip

import whisper
import whisper.tokenizer as tok
from speechbrain.pretrained import EncoderClassifier
import numpy as np
from audio_recorder_streamlit import audio_recorder

# ───────────────────────────────────────────────
# 1) Page config & Dark Theme Styling
# ───────────────────────────────────────────────
st.set_page_config(page_title="English & Accent Detector", page_icon="🎀", layout="wide")
st.markdown("""
    <style>
      body, .stApp { background-color: #121212; color: #e0e0e0; overflow-y: scroll; }
      .stButton>button {
        background-color: #1f77b4; color: #fff;
        border-radius:8px; padding:0.6em 1.2em; font-size:1rem;
      }
      .stButton>button:hover { background-color: #105b88; }
      .stVideo > video { max-width: 300px !important; border: 1px solid #333; }
    </style>
""", unsafe_allow_html=True)

# ───────────────────────────────────────────────
# 2) Load models once
# ───────────────────────────────────────────────
wmodel = whisper.load_model("tiny")
classifier = EncoderClassifier.from_hparams(
    source="Jzuluaga/accent-id-commonaccent_ecapa",
    savedir="pretrained_models/accent-id-commonaccent_ecapa"
)

# ───────────────────────────────────────────────
# 3) Accent grouping map
# ───────────────────────────────────────────────
GROUP_MAP = {
    "england": "British", "us": "American", "canada": "American",
    "australia": "Australian", "newzealand": "Australian",
    "indian": "Indian", "scotland": "Scottish", "ireland": "Irish",
    "wales": "Welsh", "african": "African", "malaysia": "Malaysian",
    "bermuda": "Bermudian", "philippines": "Philippine",
    "hongkong": "Hong Kong", "singapore": "Singaporean",
    "southatlandtic": "Other"
}
def group_accents(raw_list):
    return [(GROUP_MAP.get(r, r.capitalize()), p) for r, p in raw_list]

# ───────────────────────────────────────────────
# 4) Helper functions
# ───────────────────────────────────────────────
def download_extract_audio(url, out_vid="clip.mp4", out_wav="clip.wav",
                           max_duration=60, sr=16000):
    if os.path.exists(out_vid): os.remove(out_vid)
    try:
        with YoutubeDL({"outtmpl": out_vid, "merge_output_format": "mp4"}) as ydl:
            ydl.download([url])
    except Exception as e:
        raise RuntimeError(
            "❌ Unable to access the video. This may be due to restricted or bot-protected content.\n"
            "πŸ’‘ Tip: Use public video links like Loom or direct MP4 URLs instead."
        ) from e

    clip = VideoFileClip(out_vid)
    used = min(clip.duration, max_duration)
    sub = clip.subclip(0, used)
    sub.audio.write_audiofile(out_wav, fps=sr, codec="pcm_s16le")
    clip.close(); sub.close()
    wav, rate = librosa.load(out_wav, sr=sr, mono=True)
    return wav, rate, out_wav, out_vid

def detect_language_whisper(wav_path):
    audio = whisper.load_audio(wav_path, sr=16000)
    audio = whisper.pad_or_trim(audio)
    mel = whisper.log_mel_spectrogram(audio).to(wmodel.device)
    _, probs = wmodel.detect_language(mel)
    lang = max(probs, key=probs.get)
    conf = probs.get("en", 0.0) * 100
    return lang, conf

def classify_clip_topk(wav_path, k=3):
    out_prob, _, _, _ = classifier.classify_file(wav_path)
    probs = out_prob.squeeze().cpu().numpy()
    idxs = probs.argsort()[-k:][::-1]
    return [(classifier.hparams.label_encoder.ind2lab[i], float(probs[i]))
            for i in idxs]

# ───────────────────────────────────────────────
# 5) Streamlit UI
# ───────────────────────────────────────────────
st.title("🎀 English & Accent Detector")
st.write("""
    This tool helps you determine if a speaker is speaking English and identifies their accent.

    🧭 **How to use:**
    - Use **URL** for public video links (e.g., Loom, MP4 links).
    - Avoid using YouTube links that require login, CAPTCHA, or age verification.
    - Use **Upload** to submit local video files (MP4, MOV, WEBM, MKV).
    - Use **Record** to record short audio snippets directly from your browser.
""")

st.sidebar.header("πŸ“₯ Input")
method = st.sidebar.radio("Input method", ["URL", "Upload", "Record"])

url = None
uploaded = None
audio_bytes = None

if method == "URL":
    url = st.sidebar.text_input("Video URL (e.g. Loom, MP4)")
elif method == "Upload":
    uploaded = st.sidebar.file_uploader("Upload a video file", type=["mp4", "mov", "webm", "mkv"])
elif method == "Record":
    st.sidebar.write("πŸŽ™οΈ Click below to start recording (wait for microphone access prompt):")
    audio_bytes = audio_recorder()
    if not audio_bytes:
        st.sidebar.info("Waiting for you to record your voice...")
    else:
        st.sidebar.success("Audio recorded successfully! You can now classify it.")

if st.sidebar.button("Classify Accent"):
    with st.spinner("πŸ”Š Extracting audio..."):
        try:
            if method == "URL" and url:
                wav, sr, wav_path, vid_path = download_extract_audio(url)
            elif method == "Upload" and uploaded:
                vid_path = tempfile.NamedTemporaryFile(
                    suffix=os.path.splitext(uploaded.name)[1], delete=False
                ).name
                with open(vid_path, "wb") as f:
                    f.write(uploaded.read())
                clip = VideoFileClip(vid_path)
                wav_path = "clip.wav"
                clip.audio.write_audiofile(wav_path, fps=16000, codec="pcm_s16le")
                clip.close()
                wav, sr = librosa.load(wav_path, sr=16000, mono=True)
            elif method == "Record" and audio_bytes:
                wav_path = "recorded.wav"
                with open(wav_path, "wb") as f:
                    f.write(audio_bytes)
                wav, sr = librosa.load(wav_path, sr=16000, mono=True)
                vid_path = None
            else:
                st.error("Please supply a valid input.")
                st.stop()
        except RuntimeError as e:
            st.error(str(e))
            st.stop()

    left, right = st.columns([1, 2])
    with left:
        st.subheader("πŸ“Ί Preview")
        if method == "Record":
            st.audio(audio_bytes, format="audio/wav")
        elif vid_path:
            with open(vid_path, "rb") as f:
                st.video(f.read())

    with right:
        with st.spinner("πŸ”Ž Detecting English..."):
            lang_code, eng_conf = detect_language_whisper(wav_path)

        if eng_conf >= 4.0:
            st.markdown(
                "<div style='background-color:#1b5e20; color:#a5d6a7; padding:8px;"
                " border-radius:5px;'>βœ… <strong>English detected – classifying accent...</strong></div>",
                unsafe_allow_html=True
            )
            with st.spinner("🎯 Classifying accent..."):
                raw3 = classify_clip_topk(wav_path, k=3)
            grouped = group_accents(raw3)

            st.subheader("πŸ—£οΈ Accent Classification")
            cols = st.columns(len(grouped))
            for c, (lbl, p) in zip(cols, grouped):
                c.markdown(
                    f"""<div style=\"border:1px solid #444; border-radius:8px; padding:15px; text-align:center;\">
                          <div style=\"font-size:1.1em; font-weight:bold; color:#90caf9\">{lbl}</div>
                          <div style=\"font-size:1.8em; color:#29b6f6;\">{p*100:5.1f}%</div>
                        </div>""",
                    unsafe_allow_html=True
                )
        else:
            st.markdown(
                "<div style='background-color:#b71c1c; color:#ffcdd2; padding:8px;"
                " border-radius:5px;'>❌ <strong>English not detected</strong></div>",
                unsafe_allow_html=True
            )
            name = tok.LANGUAGES.get(lang_code, lang_code).capitalize()
            st.write(f"**Top detected language:** {name} ({eng_conf:.1f}% English)")

    for p in (wav_path, vid_path):
        if p and os.path.exists(p):
            try:
                os.remove(p)
            except:
                pass