import os import gradio as gr import requests import inspect import pandas as pd # Import GAIA system from separate module from gaia_system import BasicAgent, MultiModelGAIASystem # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" def run_and_submit_all( profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running GAIA-optimized agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: # Get raw answer from agent (should be clean already) raw_answer = agent(question_text) # Final cleanup for API submission - ensure no extra formatting submitted_answer = clean_for_api_submission(raw_answer) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) print(f"Task {task_id}: {submitted_answer}") except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df def clean_for_api_submission(answer: str) -> str: """ Final cleanup of agent answers for GAIA API submission Ensures exact match compliance """ if not answer: return "I cannot determine the answer" # Remove any remaining formatting artifacts answer = answer.strip() # Remove markdown formatting answer = answer.replace('**', '').replace('*', '').replace('`', '') # Remove any "Answer:" prefixes that might have slipped through answer = answer.replace('Answer:', '').replace('ANSWER:', '').strip() # Remove any trailing periods for factual answers (but keep for sentences) if len(answer.split()) == 1 or answer.replace('.', '').replace(',', '').isdigit(): answer = answer.rstrip('.') return answer # --- Enhanced Gradio Interface --- with gr.Blocks(title="๐Ÿš€ GAIA Multi-Agent System") as demo: gr.Markdown("# ๐Ÿš€ GAIA Multi-Agent System - BENCHMARK OPTIMIZED") gr.Markdown( """ **GAIA Benchmark-Optimized AI Agent for Exact-Match Evaluation** This system is specifically optimized for the GAIA benchmark with: ๐ŸŽฏ **Exact-Match Compliance**: Answers formatted for direct evaluation ๐Ÿงฎ **Mathematical Precision**: Clean numerical results ๐ŸŒ **Factual Accuracy**: Direct answers without explanations ๐Ÿ”ฌ **Scientific Knowledge**: Precise values and facts ๐Ÿง  **Multi-Model Reasoning**: 10+ AI models with intelligent fallback --- **GAIA Benchmark Requirements:** โœ… **Direct answers only** - No "The answer is" prefixes โœ… **No reasoning shown** - Thinking process completely removed โœ… **Exact format matching** - Numbers, names, or comma-separated lists โœ… **No explanations** - Just the final result **Test Examples:** - Math: "What is 15 + 27?" โ†’ "42" - Geography: "What is the capital of France?" โ†’ "Paris" - Science: "How many planets are in our solar system?" โ†’ "8" --- **System Status:** - โœ… GAIA-Optimized Agent: Active - ๐Ÿค– AI Models: DeepSeek-R1, GPT-4o, Llama-3.3-70B + 7 more - ๐Ÿ›ก๏ธ Fallback System: Enhanced with exact answers - ๐Ÿ“ Response Cleaning: Aggressive for benchmark compliance """ ) # Test interface for local development with gr.Row(): with gr.Column(): test_input = gr.Textbox( label="๐Ÿงช Test Question (GAIA Style)", placeholder="Try: What is 15 + 27? or What is the capital of France?", lines=2 ) test_button = gr.Button("๐Ÿ” Test Agent", variant="secondary") with gr.Column(): test_output = gr.Textbox( label="๐Ÿค– Agent Response (Direct Answer Only)", lines=3, interactive=False ) gr.LoginButton() run_button = gr.Button("๐Ÿš€ Run GAIA Evaluation & Submit All Answers", variant="primary") status_output = gr.Textbox(label="๐Ÿ“Š Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="๐Ÿ“‹ Questions and Agent Answers", wrap=True) # Test function for local development def test_agent(question): try: agent = BasicAgent() response = agent(question) # Clean for display (same as API submission) cleaned_response = clean_for_api_submission(response) return f"Direct Answer: {cleaned_response}" except Exception as e: return f"Error: {str(e)}" test_button.click( fn=test_agent, inputs=[test_input], outputs=[test_output] ) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"โœ… SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("โ„น๏ธ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"โœ… SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("โ„น๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Enhanced GAIA Multi-Agent System...") demo.launch(debug=True, share=False)