File size: 7,931 Bytes
945d0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import json
import os
from typing import List, Dict
from agent import GAIAAgent

def normalize_answer(answer: str) -> str:
    """Normalize answer for comparison."""
    if not answer:
        return ""
    
    # Remove common prefixes/suffixes
    answer = answer.strip()
    
    # Remove quotes if they wrap the entire answer
    if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
        answer = answer[1:-1]
    
    # Convert to lowercase for comparison
    return answer.lower().strip()

def extract_final_answer(response: str) -> str:
    """Extract the final answer from the model response."""
    if "FINAL ANSWER:" in response:
        answer = response.split("FINAL ANSWER:")[1].strip()
        # Clean up the answer - remove any trailing explanation
        answer = answer.split('\n')[0].strip()
        return answer
    
    # If no FINAL ANSWER format, try to extract from end of response
    lines = response.strip().split('\n')
    return lines[-1].strip()

def load_gaia_dataset(dataset_path: str) -> List[Dict]:
    """Load GAIA dataset from JSON/JSONL file."""
    tasks = []
    
    if not os.path.exists(dataset_path):
        print(f"Dataset file not found: {dataset_path}")
        return tasks
    
    try:
        with open(dataset_path, "r", encoding="utf-8") as f:
            if dataset_path.endswith('.jsonl'):
                # JSONL format - one JSON object per line
                for line_num, line in enumerate(f, 1):
                    line = line.strip()
                    if line:
                        try:
                            task = json.loads(line)
                            tasks.append(task)
                        except json.JSONDecodeError as e:
                            print(f"Error parsing line {line_num}: {e}")
            else:
                # Regular JSON format
                data = json.load(f)
                if isinstance(data, list):
                    tasks = data
                elif isinstance(data, dict) and 'tasks' in data:
                    tasks = data['tasks']
                else:
                    print("Unexpected JSON format")
    
    except Exception as e:
        print(f"Error loading dataset: {e}")
    
    print(f"Loaded {len(tasks)} tasks from {dataset_path}")
    return tasks

def create_sample_dataset() -> List[Dict]:
    """Create a sample dataset for testing if no GAIA dataset is available."""
    sample_tasks = [
        {
            "task_id": "sample_1",
            "question": "What is 15 + 27?",
            "answer": "42",
            "level": 1,
            "file_name": None
        },
        {
            "task_id": "sample_2", 
            "question": "What is the capital of France?",
            "answer": "Paris",
            "level": 1,
            "file_name": None
        },
        {
            "task_id": "sample_3",
            "question": "How many days are in a leap year?",
            "answer": "366",
            "level": 1,
            "file_name": None
        },
        {
            "task_id": "sample_4",
            "question": "What is 2 * 6 * 7?",
            "answer": "84",
            "level": 1,
            "file_name": None
        },
        {
            "task_id": "sample_5",
            "question": "What year did World War II end?",
            "answer": "1945",
            "level": 1,
            "file_name": None
        }
    ]
    
    print("Using sample dataset for testing")
    return sample_tasks

def evaluate_agent(dataset_path: str = None, max_tasks: int = None) -> float:
    """Evaluate the GAIA agent on the dataset."""
    # Load dataset
    if dataset_path and os.path.exists(dataset_path):
        tasks = load_gaia_dataset(dataset_path)
    else:
        print("No dataset file found, using sample tasks for testing")
        tasks = create_sample_dataset()
    
    if not tasks:
        print("No tasks to evaluate")
        return 0.0
    
    # Limit number of tasks if specified
    if max_tasks:
        tasks = tasks[:max_tasks]
        print(f"Evaluating on first {len(tasks)} tasks")
    
    # Initialize agent
    print("Initializing GAIA agent...")
    agent = GAIAAgent()
    
    # Test API connection first
    print("Testing API connection...")
    test_response = agent.test_grok()
    if "error" in test_response.lower():
        print(f"API test failed: {test_response}")
        return 0.0
    else:
        print("API connection successful!")
    
    # Process tasks
    correct = 0
    total = len(tasks)
    submission_entries = []
    
    print(f"\nStarting evaluation on {total} tasks...")
    print("=" * 50)
    
    for i, task in enumerate(tasks, 1):
        task_id = task.get("task_id", f"task_{i}")
        question = task.get("question", "")
        expected_answer = task.get("answer", "")
        
        print(f"\nTask {i}/{total}: {task_id}")
        print(f"Question: {question[:100]}{'...' if len(question) > 100 else ''}")
        
        try:
            # Process task with agent
            response = agent.process_task(task)
            predicted_answer = extract_final_answer(response)
            
            print(f"Expected: {expected_answer}")
            print(f"Predicted: {predicted_answer}")
            
            # Compare answers (normalized)
            is_correct = normalize_answer(predicted_answer) == normalize_answer(expected_answer)
            
            if is_correct:
                correct += 1
                print("βœ… CORRECT")
            else:
                print("❌ INCORRECT")
            
            # Store submission entry
            submission_entries.append({
                "task_id": task_id,
                "model_answer": predicted_answer,
                "reasoning_trace": response
            })
            
        except Exception as e:
            print(f"Error processing task {task_id}: {e}")
            submission_entries.append({
                "task_id": task_id,
                "model_answer": "ERROR",
                "reasoning_trace": f"Error: {str(e)}"
            })
        
        # Progress update
        current_score = (correct / i) * 100
        print(f"Current score: {correct}/{i} = {current_score:.1f}%")
        print("-" * 30)
    
    # Final score
    final_score = (correct / total) * 100
    
    # Save submission file
    try:
        with open("submission.jsonl", "w", encoding="utf-8") as f:
            for entry in submission_entries:
                f.write(json.dumps(entry) + "\n")
        print(f"\nSubmission saved to submission.jsonl")
    except Exception as e:
        print(f"Error saving submission: {e}")
    
    # Print final results
    print("=" * 50)
    print("FINAL RESULTS")
    print("=" * 50)
    print(f"Total tasks: {total}")
    print(f"Correct answers: {correct}")
    print(f"Final score: {final_score:.2f}%")
    
    if final_score >= 30:
        print("πŸŽ‰ CONGRATULATIONS! Score β‰₯30% - Certificate achieved!")
    else:
        print(f"πŸ“ˆ Score below 30%. Need {30 - final_score:.2f}% more for certificate.")
    
    return final_score

def main():
    """Main evaluation function."""
    import argparse
    
    parser = argparse.ArgumentParser(description="Evaluate GAIA agent")
    parser.add_argument("--dataset", type=str, default="gaia_test.json", 
                       help="Path to GAIA dataset file")
    parser.add_argument("--max-tasks", type=int, default=None,
                       help="Maximum number of tasks to evaluate")
    
    args = parser.parse_args()
    
    score = evaluate_agent(args.dataset, args.max_tasks)
    
    print(f"\nFinal evaluation score: {score:.2f}%")
    
    if score >= 30:
        print("Certificate requirements met! πŸŽ‰")
    else:
        print("Keep working to reach 30% for the certificate! πŸ’ͺ")

if __name__ == "__main__":
    main()