Spaces:
Running
Running
File size: 54,268 Bytes
8205d6b c79f796 8205d6b c79f796 8205d6b c79f796 8205d6b c79f796 8205d6b c79f796 8205d6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 |
# DEPENDENCIES
import os
import time
import json
import uvicorn
import numpy as np
from typing import Any
from typing import List
from typing import Dict
from typing import Union
from pathlib import Path
from fastapi import File
from fastapi import Form
from loguru import logger
from pydantic import Field
from typing import Optional
from fastapi import FastAPI
from fastapi import Request
from datetime import datetime
from fastapi import UploadFile
from pydantic import BaseModel
from fastapi import HTTPException
from fastapi import BackgroundTasks
from config.settings import settings
from utils.logger import central_logger
from utils.logger import log_api_request
from detector.attribution import AIModel
from config.threshold_config import Domain
from fastapi.responses import JSONResponse
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from utils.logger import log_detection_event
from detector.attribution import ModelAttributor
from detector.highlighter import TextHighlighter
from processors.language_detector import Language
from detector.orchestrator import DetectionResult
from detector.attribution import AttributionResult
from fastapi.middleware.cors import CORSMiddleware
from processors.text_processor import TextProcessor
from reporter.report_generator import ReportGenerator
from detector.orchestrator import DetectionOrchestrator
from processors.domain_classifier import DomainClassifier
from processors.language_detector import LanguageDetector
from processors.document_extractor import DocumentExtractor
from reporter.reasoning_generator import ReasoningGenerator
# ==================== CUSTOM SERIALIZATION ====================
class NumpyJSONEncoder(json.JSONEncoder):
"""
Custom JSON encoder that handles NumPy types and custom objects
"""
def default(self, obj: Any) -> Any:
"""
Convert non-serializable objects to JSON-serializable types
"""
# NumPy types
if (isinstance(obj, (np.float32, np.float64))):
return float(obj)
elif (isinstance(obj, (np.int32, np.int64, np.int8, np.uint8))):
return int(obj)
elif (isinstance(obj, np.ndarray)):
return obj.tolist()
elif (isinstance(obj, np.bool_)):
return bool(obj)
elif (hasattr(obj, 'item')):
# numpy scalar types
return obj.item()
# Custom objects with to_dict method
elif (hasattr(obj, 'to_dict')):
return obj.to_dict()
# Pydantic models
elif (hasattr(obj, 'dict')):
return obj.dict()
# Handle other types
elif (isinstance(obj, (set, tuple))):
return list(obj)
return super().default(obj)
class NumpyJSONResponse(JSONResponse):
"""
Custom JSON response that handles NumPy types
"""
def render(self, content: Any) -> bytes:
"""
Render content with NumPy type handling
"""
return json.dumps(obj = content,
ensure_ascii = False,
allow_nan = False,
indent = None,
separators = (",", ":"),
cls = NumpyJSONEncoder,
).encode("utf-8")
def convert_numpy_types(obj: Any) -> Any:
"""
Recursively convert numpy types to Python native types
Arguments:
----------
obj : Any Python object that may contain NumPy types
Returns:
--------
Object with all NumPy types converted to native Python types
"""
if (obj is None):
return None
# Handle dictionaries
if (isinstance(obj, dict)):
return {key: convert_numpy_types(value) for key, value in obj.items()}
# Handle lists, tuples, sets
elif (isinstance(obj, (list, tuple, set))):
return [convert_numpy_types(item) for item in obj]
# Handle NumPy types
elif (isinstance(obj, (np.float32, np.float64))):
return float(obj)
elif (isinstance(obj, (np.int32, np.int64, np.int8, np.uint8))):
return int(obj)
elif (isinstance(obj, np.ndarray)):
return obj.tolist()
elif (isinstance(obj, np.bool_)):
return bool(obj)
# numpy scalar types
elif (hasattr(obj, 'item')):
return obj.item()
# Handle custom objects with to_dict method
elif (hasattr(obj, 'to_dict')):
return convert_numpy_types(obj.to_dict())
# Handle Pydantic models
elif (hasattr(obj, 'dict')):
return convert_numpy_types(obj.dict())
# Return as-is for other types (str, int, float, bool, etc.)
else:
return obj
def safe_serialize_response(data: Any) -> Any:
"""
Safely serialize response data ensuring all types are JSON-compatible
Arguments:
----------
data : Response data to serialize
Returns:
--------
Fully serializable data structure
"""
return convert_numpy_types(data)
# ==================== PYDANTIC DATACLASS MODELS ====================
class SerializableBaseModel(BaseModel):
"""
Base model with enhanced serialization for NumPy types
"""
def dict(self, *args, **kwargs) -> Dict[str, Any]:
"""
Override dict method to handle NumPy types
"""
data = super().dict(*args, **kwargs)
return convert_numpy_types(data)
def json(self, *args, **kwargs) -> str:
"""
Override json method to handle NumPy types
"""
data = self.dict(*args, **kwargs)
return json.dumps(data, cls=NumpyJSONEncoder, *args, **kwargs)
class TextAnalysisRequest(SerializableBaseModel):
"""
Request model for text analysis
"""
text : str = Field(..., min_length = 50, max_length = 50000, description = "Text to analyze")
domain : Optional[str] = Field(None, description = "Override automatic domain detection")
enable_attribution : bool = Field(True, description = "Enable AI model attribution")
enable_highlighting : bool = Field(True, description = "Generate sentence highlighting")
skip_expensive_metrics : bool = Field(False, description = "Skip computationally expensive metrics")
use_sentence_level : bool = Field(True, description = "Use sentence-level analysis for highlighting")
include_metrics_summary : bool = Field(True, description = "Include metrics summary in highlights")
generate_report : bool = Field(False, description = "Generate detailed PDF/JSON report")
class TextAnalysisResponse(SerializableBaseModel):
"""
Response model for text analysis
"""
status : str
analysis_id : str
detection_result : Dict[str, Any]
attribution : Optional[Dict[str, Any]] = None
highlighted_html : Optional[str] = None
reasoning : Optional[Dict[str, Any]] = None
report_files : Optional[Dict[str, str]] = None
processing_time : float
timestamp : str
class BatchAnalysisRequest(SerializableBaseModel):
"""
Request model for batch analysis
"""
texts : List[str] = Field(..., min_items = 1, max_items = 100)
domain : Optional[str] = None
enable_attribution : bool = False
skip_expensive_metrics : bool = True
generate_reports : bool = False
class BatchAnalysisResult(SerializableBaseModel):
"""
Individual batch analysis result
"""
index : int
status : str
detection : Optional[Dict[str, Any]] = None
attribution : Optional[Dict[str, Any]] = None
reasoning : Optional[Dict[str, Any]] = None
report_files : Optional[Dict[str, str]] = None
error : Optional[str] = None
class BatchAnalysisResponse(SerializableBaseModel):
"""
Batch analysis response
"""
status : str
batch_id : str
total : int
successful : int
failed : int
results : List[BatchAnalysisResult]
processing_time : float
timestamp : str
class FileAnalysisResponse(SerializableBaseModel):
"""
File analysis response
"""
status : str
analysis_id : str
file_info : Dict[str, Any]
detection_result : Dict[str, Any]
attribution : Optional[Dict[str, Any]] = None
highlighted_html : Optional[str] = None
reasoning : Optional[Dict[str, Any]] = None
report_files : Optional[Dict[str, str]] = None
processing_time : float
timestamp : str
class HealthCheckResponse(SerializableBaseModel):
"""
Health check response
"""
status : str
version : str
uptime : float
models_loaded : Dict[str, bool]
class ReportGenerationResponse(SerializableBaseModel):
"""
Report generation response
"""
status : str
analysis_id : str
reports : Dict[str, str]
timestamp : str
class ErrorResponse(SerializableBaseModel):
"""
Error response model
"""
status : str
error : str
timestamp : str
# ==================== FASTAPI APPLICATION ====================
app = FastAPI(title = "TEXT-AUTH AI Detection API",
description = "API for detecting AI-generated text",
version = "1.0.0",
docs_url = "/api/docs",
redoc_url = "/api/redoc",
default_response_class = NumpyJSONResponse,
)
# CORS Configuration
app.add_middleware(CORSMiddleware,
allow_origins = settings.CORS_ORIGINS,
allow_credentials = True,
allow_methods = ["*"],
allow_headers = ["*"],
)
# Mount static files
ui_static_path = Path(__file__).parent / "ui" / "static"
if ui_static_path.exists():
app.mount("/static", StaticFiles(directory = str(ui_static_path)), name = "static")
# Global instances
orchestrator : Optional[DetectionOrchestrator] = None
attributor : Optional[ModelAttributor] = None
highlighter : Optional[TextHighlighter] = None
reporter : Optional[ReportGenerator] = None
reasoning_generator: Optional[ReasoningGenerator] = None
document_extractor : Optional[DocumentExtractor] = None
# App state
app_start_time = time.time()
initialization_status = {"orchestrator" : False,
"attributor" : False,
"highlighter" : False,
"reporter" : False,
"reasoning_generator" : False,
"document_extractor" : False,
}
# ==================== APPLICATION LIFECYCLE ====================
@app.on_event("startup")
async def startup_event():
"""
Initialize all components on startup
"""
global orchestrator, attributor, highlighter, reporter, reasoning_generator, document_extractor
global initialization_status
# Initialize centralized logging first
if not central_logger.initialize():
raise RuntimeError("Failed to initialize logging system")
logger.info("=" * 80)
logger.info("TEXT-AUTH API Starting Up...")
logger.info("=" * 80)
try:
# Initialize Detection Orchestrator
logger.info("Initializing Detection Orchestrator...")
orchestrator = DetectionOrchestrator(enable_language_detection = True,
parallel_execution = False,
skip_expensive_metrics = False,
)
if orchestrator.initialize():
initialization_status["orchestrator"] = True
logger.success("β Detection Orchestrator initialized")
else:
logger.warning("β Detection Orchestrator initialization incomplete")
# Initialize Model Attributor
logger.info("Initializing Model Attributor...")
attributor = ModelAttributor()
if attributor.initialize():
initialization_status["attributor"] = True
logger.success("β Model Attributor initialized")
else:
logger.warning("β Model Attributor initialization incomplete")
# Initialize Text Highlighter
logger.info("Initializing Text Highlighter...")
highlighter = TextHighlighter()
initialization_status["highlighter"] = True
logger.success("β Text Highlighter initialized")
# Initialize Report Generator
logger.info("Initializing Report Generator...")
reporter = ReportGenerator()
initialization_status["reporter"] = True
logger.success("β Report Generator initialized")
# Initialize Reasoning Generator
logger.info("Initializing Reasoning Generator...")
reasoning_generator = ReasoningGenerator()
initialization_status["reasoning_generator"] = True
logger.success("β Reasoning Generator initialized")
# Initialize Document Extractor
logger.info("Initializing Document Extractor...")
document_extractor = DocumentExtractor()
initialization_status["document_extractor"] = True
logger.success("β Document Extractor initialized")
logger.info("=" * 80)
logger.success("TEXT-AUTH API Ready!")
logger.info(f"Server: {settings.HOST}:{settings.PORT}")
logger.info(f"Environment: {settings.ENVIRONMENT}")
logger.info(f"Device: {settings.DEVICE}")
logger.info("=" * 80)
except Exception as e:
logger.error(f"Startup failed: {e}")
raise
# Cleanup in shutdown
@app.on_event("shutdown")
async def shutdown_event():
"""
Cleanup on shutdown
"""
central_logger.cleanup()
logger.info("Shutdown complete")
# ==================== UTILITY FUNCTIONS ====================
def _get_domain_description(domain: Domain) -> str:
"""
Get description for a domain
"""
descriptions = {Domain.GENERAL : "General content without specific domain",
Domain.ACADEMIC : "Academic papers, essays, research",
Domain.CREATIVE : "Creative writing, fiction, poetry",
Domain.AI_ML : "AI/ML research papers, technical content",
Domain.SOFTWARE_DEV : "Software development, code, documentation",
Domain.TECHNICAL_DOC : "Technical documentation, manuals, specs",
Domain.ENGINEERING : "Engineering documents, technical reports",
Domain.SCIENCE : "Scientific papers, research articles",
Domain.BUSINESS : "Business documents, reports, proposals",
Domain.LEGAL : "Legal documents, contracts, court filings",
Domain.MEDICAL : "Medical documents, clinical notes, research",
Domain.JOURNALISM : "News articles, journalistic content",
Domain.MARKETING : "Marketing copy, advertisements, campaigns",
Domain.SOCIAL_MEDIA : "Social media posts, blogs, casual writing",
Domain.BLOG_PERSONAL : "Personal blogs, diary entries",
Domain.TUTORIAL : "Tutorials, how-to guides, educational content",
}
return descriptions.get(domain, "")
def _parse_domain(domain_str: Optional[str]) -> Optional[Domain]:
"""
Parse domain string to Domain enum with comprehensive alias support
"""
if not domain_str:
return None
# First try exact match
try:
return Domain(domain_str.lower())
except ValueError:
# Comprehensive domain mapping with aliases for all 16 domains
domain_mapping = {'general' : Domain.GENERAL,
'default' : Domain.GENERAL,
'generic' : Domain.GENERAL,
'academic' : Domain.ACADEMIC,
'education' : Domain.ACADEMIC,
'research' : Domain.ACADEMIC,
'university' : Domain.ACADEMIC,
'scholarly' : Domain.ACADEMIC,
'creative' : Domain.CREATIVE,
'fiction' : Domain.CREATIVE,
'literature' : Domain.CREATIVE,
'story' : Domain.CREATIVE,
'narrative' : Domain.CREATIVE,
'ai_ml' : Domain.AI_ML,
'ai' : Domain.AI_ML,
'machinelearning' : Domain.AI_ML,
'ml' : Domain.AI_ML,
'artificialintelligence' : Domain.AI_ML,
'neural' : Domain.AI_ML,
'software_dev' : Domain.SOFTWARE_DEV,
'software' : Domain.SOFTWARE_DEV,
'code' : Domain.SOFTWARE_DEV,
'programming' : Domain.SOFTWARE_DEV,
'development' : Domain.SOFTWARE_DEV,
'dev' : Domain.SOFTWARE_DEV,
'technical_doc' : Domain.TECHNICAL_DOC,
'technical' : Domain.TECHNICAL_DOC,
'tech' : Domain.TECHNICAL_DOC,
'documentation' : Domain.TECHNICAL_DOC,
'docs' : Domain.TECHNICAL_DOC,
'manual' : Domain.TECHNICAL_DOC,
'engineering' : Domain.ENGINEERING,
'engineer' : Domain.ENGINEERING,
'technical_engineering' : Domain.ENGINEERING,
'science' : Domain.SCIENCE,
'scientific' : Domain.SCIENCE,
'research_science' : Domain.SCIENCE,
'business' : Domain.BUSINESS,
'corporate' : Domain.BUSINESS,
'commercial' : Domain.BUSINESS,
'enterprise' : Domain.BUSINESS,
'legal' : Domain.LEGAL,
'law' : Domain.LEGAL,
'contract' : Domain.LEGAL,
'court' : Domain.LEGAL,
'juridical' : Domain.LEGAL,
'medical' : Domain.MEDICAL,
'healthcare' : Domain.MEDICAL,
'clinical' : Domain.MEDICAL,
'medicine' : Domain.MEDICAL,
'health' : Domain.MEDICAL,
'journalism' : Domain.JOURNALISM,
'news' : Domain.JOURNALISM,
'reporting' : Domain.JOURNALISM,
'media' : Domain.JOURNALISM,
'press' : Domain.JOURNALISM,
'marketing' : Domain.MARKETING,
'advertising' : Domain.MARKETING,
'promotional' : Domain.MARKETING,
'brand' : Domain.MARKETING,
'sales' : Domain.MARKETING,
'social_media' : Domain.SOCIAL_MEDIA,
'social' : Domain.SOCIAL_MEDIA,
'casual' : Domain.SOCIAL_MEDIA,
'informal' : Domain.SOCIAL_MEDIA,
'posts' : Domain.SOCIAL_MEDIA,
'blog_personal' : Domain.BLOG_PERSONAL,
'blog' : Domain.BLOG_PERSONAL,
'personal' : Domain.BLOG_PERSONAL,
'diary' : Domain.BLOG_PERSONAL,
'lifestyle' : Domain.BLOG_PERSONAL,
'tutorial' : Domain.TUTORIAL,
'guide' : Domain.TUTORIAL,
'howto' : Domain.TUTORIAL,
'instructional' : Domain.TUTORIAL,
'educational' : Domain.TUTORIAL,
'walkthrough' : Domain.TUTORIAL,
}
normalized_domain = domain_str.lower().strip()
if normalized_domain in domain_mapping:
return domain_mapping[normalized_domain]
# Try to match with underscores/spaces variations
normalized_with_underscores = normalized_domain.replace(' ', '_')
if normalized_with_underscores in domain_mapping:
return domain_mapping[normalized_with_underscores]
# Try partial matching for more flexibility
for alias, domain_enum in domain_mapping.items():
if normalized_domain in alias or alias in normalized_domain:
return domain_enum
return None
def _validate_file_extension(filename: str) -> str:
"""
Validate file extension and return normalized extension
"""
file_extension = Path(filename).suffix.lower()
allowed_extensions = ['.txt',
'.pdf',
'.docx',
'.doc',
'.md',
]
if file_extension not in allowed_extensions:
raise HTTPException(status_code = 400,
detail = f"Unsupported file type. Allowed: {', '.join(allowed_extensions)}",
)
return file_extension
def _generate_reasoning(detection_result: DetectionResult, attribution_result: Optional[AttributionResult] = None) -> Dict[str, Any]:
"""
Generate detailed reasoning for detection results
"""
if not reasoning_generator:
return {}
try:
reasoning = reasoning_generator.generate(ensemble_result = detection_result.ensemble_result,
metric_results = detection_result.metric_results,
domain = detection_result.domain_prediction.primary_domain,
attribution_result = attribution_result,
text_length = detection_result.processed_text.word_count,
)
return safe_serialize_response(reasoning.to_dict())
except Exception as e:
logger.warning(f"Reasoning generation failed: {e}")
return {}
def _generate_reports(detection_result: DetectionResult, attribution_result: Optional[AttributionResult] = None,
highlighted_sentences: Optional[List] = None, analysis_id: str = None) -> Dict[str, str]:
"""
Generate reports for detection results
"""
if not reporter:
return {}
try:
report_files = reporter.generate_complete_report(detection_result = detection_result,
attribution_result = attribution_result,
highlighted_sentences = highlighted_sentences,
formats = ["json", "pdf"],
filename_prefix = analysis_id or f"report_{int(time.time() * 1000)}",
)
return report_files
except Exception as e:
logger.warning(f"Report generation failed: {e}")
return {}
# ==================== ROOT & HEALTH ENDPOINTS ====================
@app.get("/", response_class = HTMLResponse)
async def root():
"""
Serve the main web interface
"""
# Serve the updated index.html directly from the current directory
index_path = Path(__file__).parent / "index.html"
if index_path.exists():
with open(index_path, 'r', encoding='utf-8') as f:
return HTMLResponse(content=f.read())
# Fallback to static directory if exists
ui_static_path = Path(__file__).parent / "ui" / "static"
index_path = ui_static_path / "index.html"
if index_path.exists():
with open(index_path, 'r', encoding='utf-8') as f:
return HTMLResponse(content=f.read())
return HTMLResponse(content = """
<html>
<head><title>TEXT-AUTH API</title></head>
<body style="font-family: sans-serif; padding: 50px; text-align: center;">
<h1>π TEXT-AUTH API</h1>
<p>AI Text Detection Platform v2.0</p>
<p><a href="/api/docs">API Documentation</a></p>
<p><a href="/health">Health Check</a></p>
</body>
</html>
"""
)
@app.get("/health", response_model = HealthCheckResponse)
async def health_check():
"""
Health check endpoint
"""
return HealthCheckResponse(status = "healthy" if all(initialization_status.values()) else "degraded",
version = "2.0.0",
uptime = time.time() - app_start_time,
models_loaded = initialization_status,
)
# ==================== ANALYSIS ENDPOINTS ====================
@app.post("/api/analyze", response_model = TextAnalysisResponse)
async def analyze_text(request: TextAnalysisRequest):
"""
Analyze text for AI generation
"""
if not orchestrator:
raise HTTPException(status_code=503, detail="Service not initialized")
start_time = time.time()
analysis_id = f"analysis_{int(time.time() * 1000)}"
try:
# Parse domain if provided
domain = _parse_domain(request.domain)
if (request.domain and not domain):
raise HTTPException(status_code = 400,
detail = f"Invalid domain. Valid options: {[d.value for d in Domain]}",
)
# Run detection analysis
logger.info(f"[{analysis_id}] Analyzing text ({len(request.text)} chars)")
detection_result = orchestrator.analyze(text = request.text,
domain = domain,
skip_expensive = request.skip_expensive_metrics,
)
# Convert detection result to ensure serializability
detection_dict = safe_serialize_response(detection_result.to_dict())
# Attribution (if enabled)
attribution_result = None
attribution_dict = None
if (request.enable_attribution and attributor):
try:
logger.info(f"[{analysis_id}] Running attribution...")
attribution_result = attributor.attribute(text = request.text,
processed_text = detection_result.processed_text,
metric_results = detection_result.metric_results,
domain = detection_result.domain_prediction.primary_domain,
)
attribution_dict = safe_serialize_response(attribution_result.to_dict())
except Exception as e:
logger.warning(f"Attribution failed: {e}")
# Highlighting (if enabled)
highlighted_sentences = None
highlighted_html = None
if request.enable_highlighting and highlighter:
try:
logger.info(f"[{analysis_id}] Generating highlights...")
highlighted_sentences = highlighter.generate_highlights(text = request.text,
metric_results = detection_result.metric_results,
ensemble_result = detection_result.ensemble_result,
use_sentence_level = request.use_sentence_level,
)
# Set include_legend=False to prevent duplicate legends
highlighted_html = highlighter.generate_html(highlighted_sentences = highlighted_sentences,
include_legend = False, # UI already has its own legend
include_metrics = request.include_metrics_summary,
)
except Exception as e:
logger.warning(f"Highlighting failed: {e}")
# Generate reasoning
reasoning_dict = _generate_reasoning(detection_result, attribution_result)
# Generate reports (if requested)
report_files = {}
if request.generate_report:
try:
logger.info(f"[{analysis_id}] Generating reports...")
report_files = _generate_reports(detection_result = detection_result,
attribution_result = attribution_result,
highlighted_sentences = highlighted_sentences,
analysis_id = analysis_id,
)
except Exception as e:
logger.warning(f"Report generation failed: {e}")
processing_time = time.time() - start_time
# Log the detection event
log_detection_event(analysis_id = analysis_id,
text_length = len(request.text),
verdict = detection_result.ensemble_result.final_verdict,
confidence = detection_result.ensemble_result.overall_confidence,
domain = detection_result.domain_prediction.primary_domain.value,
processing_time = processing_time,
enable_attribution = request.enable_attribution,
enable_highlighting = request.enable_highlighting,
)
return TextAnalysisResponse(status = "success",
analysis_id = analysis_id,
detection_result = detection_dict,
attribution = attribution_dict,
highlighted_html = highlighted_html,
reasoning = reasoning_dict,
report_files = report_files,
processing_time = processing_time,
timestamp = datetime.now().isoformat(),
)
except HTTPException:
central_logger.log_error("TextAnalysisError",
f"Analysis failed for request",
{"text_length": len(request.text)},
e,
)
raise
except Exception as e:
logger.error(f"[{analysis_id}] Analysis failed: {e}")
raise HTTPException(status_code = 500,
detail = str(e),
)
@app.post("/api/analyze/file", response_model = FileAnalysisResponse)
async def analyze_file(file: UploadFile = File(...), domain: Optional[str] = Form(None), enable_attribution: bool = Form(True), skip_expensive_metrics: bool = Form(False),
use_sentence_level: bool = Form(True), include_metrics_summary: bool = Form(True), generate_report: bool = Form(False)):
"""
Analyze uploaded document (PDF, DOCX, TXT)
"""
if not document_extractor or not orchestrator:
raise HTTPException(status_code=503, detail="Service not initialized")
start_time = time.time()
analysis_id = f"file_{int(time.time() * 1000)}"
try:
# Validate file
file_ext = _validate_file_extension(file.filename)
# Read and extract text
logger.info(f"[{analysis_id}] Extracting text from {file.filename}")
file_bytes = await file.read()
extracted_doc = document_extractor.extract_from_bytes(file_bytes = file_bytes,
filename = file.filename,
)
if not extracted_doc.is_success or not extracted_doc.text:
raise HTTPException(status_code = 400,
detail = f"Text extraction failed: {extracted_doc.error_message}"
)
logger.info(f"[{analysis_id}] Extracted {len(extracted_doc.text)} characters")
# Parse domain and analyze
domain_enum = _parse_domain(domain)
detection_result = orchestrator.analyze(text = extracted_doc.text,
domain = domain_enum,
skip_expensive = skip_expensive_metrics,
)
# Convert to serializable dict
detection_dict = safe_serialize_response(detection_result.to_dict())
# Attribution
attribution_result = None
attribution_dict = None
if (enable_attribution and attributor):
try:
attribution_result = attributor.attribute(text = extracted_doc.text,
processed_text = detection_result.processed_text,
metric_results = detection_result.metric_results,
domain = detection_result.domain_prediction.primary_domain,
)
attribution_dict = safe_serialize_response(attribution_result.to_dict())
except Exception as e:
logger.warning(f"Attribution failed: {e}")
# Highlighting
highlighted_sentences = None
highlighted_html = None
if highlighter:
try:
highlighted_sentences = highlighter.generate_highlights(text = extracted_doc.text,
metric_results = detection_result.metric_results,
ensemble_result = detection_result.ensemble_result,
use_sentence_level = use_sentence_level,
)
# Set include_legend=False to prevent duplicate legends
highlighted_html = highlighter.generate_html(highlighted_sentences = highlighted_sentences,
include_legend = False, # UI already has its own legend
include_metrics = include_metrics_summary,
)
except Exception as e:
logger.warning(f"Highlighting failed: {e}")
# Generate reasoning
reasoning_dict = _generate_reasoning(detection_result, attribution_result)
# Generate reports (if requested)
report_files = dict()
if generate_report:
try:
logger.info(f"[{analysis_id}] Generating reports...")
report_files = _generate_reports(detection_result = detection_result,
attribution_result = attribution_result,
highlighted_sentences = highlighted_sentences,
analysis_id = analysis_id,
)
except Exception as e:
logger.warning(f"Report generation failed: {e}")
processing_time = time.time() - start_time
return FileAnalysisResponse(status = "success",
analysis_id = analysis_id,
file_info = {"filename" : file.filename,
"file_type" : file_ext,
"pages" : extracted_doc.page_count,
"extraction_method" : extracted_doc.extraction_method,
"highlighted_html" : highlighted_html is not None,
},
detection_result = detection_dict,
attribution = attribution_dict,
highlighted_html = highlighted_html,
reasoning = reasoning_dict,
report_files = report_files,
processing_time = processing_time,
timestamp = datetime.now().isoformat(),
)
except HTTPException:
raise
except Exception as e:
logger.error(f"[{analysis_id}] File analysis failed: {e}")
raise HTTPException(status_code = 500,
detail = str(e),
)
@app.post("/api/analyze/batch", response_model = BatchAnalysisResponse)
async def batch_analyze(request: BatchAnalysisRequest):
"""
Analyze multiple texts in batch
Limits : 1-100 texts per request
"""
if not orchestrator:
raise HTTPException(status_code = 503,
detail = "Service not initialized",
)
if (len(request.texts) > 100):
raise HTTPException(status_code = 400,
detail = "Maximum 100 texts per batch",
)
start_time = time.time()
batch_id = f"batch_{int(time.time() * 1000)}"
try:
# Parse domain
domain = _parse_domain(request.domain)
logger.info(f"[{batch_id}] Processing {len(request.texts)} texts")
results = []
for i, text in enumerate(request.texts):
try:
detection_result = orchestrator.analyze(text = text,
domain = domain,
skip_expensive = request.skip_expensive_metrics,
)
# Convert to serializable dict
detection_dict = safe_serialize_response(detection_result.to_dict())
# Attribution if enabled
attribution_result = None
attribution_dict = None
if request.enable_attribution and attributor:
try:
attribution_result = attributor.attribute(text = text,
processed_text = detection_result.processed_text,
metric_results = detection_result.metric_results,
domain = detection_result.domain_prediction.primary_domain,
)
attribution_dict = safe_serialize_response(attribution_result.to_dict())
except Exception:
pass
# Generate reasoning
reasoning_dict = _generate_reasoning(detection_result, attribution_result)
# Generate reports if requested
report_files = {}
if request.generate_reports:
try:
report_files = _generate_reports(detection_result = detection_result,
attribution_result = attribution_result,
analysis_id = f"{batch_id}_{i}"
)
except Exception:
pass
results.append(BatchAnalysisResult(index = i,
status = "success",
detection = detection_dict,
attribution = attribution_dict,
reasoning = reasoning_dict,
report_files = report_files,
)
)
except Exception as e:
logger.error(f"[{batch_id}] Text {i} failed: {e}")
results.append(BatchAnalysisResult(index = i,
status = "error",
error = str(e),
)
)
processing_time = time.time() - start_time
success_count = sum(1 for r in results if r.status == "success")
logger.success(f"[{batch_id}] Batch complete: {success_count}/{len(request.texts)} successful")
return BatchAnalysisResponse(status = "success",
batch_id = batch_id,
total = len(request.texts),
successful = success_count,
failed = len(request.texts) - success_count,
results = results,
processing_time = processing_time,
timestamp = datetime.now().isoformat(),
)
except Exception as e:
logger.error(f"[{batch_id}] Batch analysis failed: {e}")
raise HTTPException(status_code = 500,
detail = str(e),
)
# ==================== REPORT GENERATION ENDPOINTS ====================
@app.post("/api/report/generate", response_model = ReportGenerationResponse)
async def generate_report(background_tasks: BackgroundTasks, analysis_id: str = Form(...), text: str = Form(...), formats: str = Form("json,pdf"),
include_highlights: bool = Form(True)):
"""
Generate detailed report for an analysis
"""
if not orchestrator or not reporter:
raise HTTPException(status_code=503, detail="Service not initialized")
try:
# Parse formats
requested_formats = [f.strip() for f in formats.split(',')]
valid_formats = ['json', 'pdf'] # Only JSON and PDF supported now
for fmt in requested_formats:
if fmt not in valid_formats:
raise HTTPException(status_code = 400,
detail = f"Invalid format '{fmt}'. Valid: {', '.join(valid_formats)}",
)
# Analyze text
logger.info(f"Generating report for {analysis_id}")
detection_result = orchestrator.analyze(text = text)
# Attribution
attribution_result = None
if attributor:
try:
attribution_result = attributor.attribute(text = text,
processed_text = detection_result.processed_text,
metric_results = detection_result.metric_results,
domain = detection_result.domain_prediction.primary_domain,
)
except Exception as e:
logger.warning(f"Attribution failed: {e}")
# Generate highlights for PDF reports if requested
highlighted_sentences = None
if (include_highlights and highlighter and 'pdf' in requested_formats):
try:
highlighted_sentences = highlighter.generate_highlights(text = text,
metric_results = detection_result.metric_results,
ensemble_result = detection_result.ensemble_result,
)
except Exception as e:
logger.warning(f"Highlight generation for report failed: {e}")
# Generate reports
report_files = reporter.generate_complete_report(detection_result = detection_result,
attribution_result = attribution_result,
highlighted_sentences = highlighted_sentences,
formats = requested_formats,
filename_prefix = analysis_id,
)
# Extract only the filename from the full path for the response
report_filenames = dict()
for fmt, full_path in report_files.items():
# Get the filename part
report_filenames[fmt] = Path(full_path).name
return ReportGenerationResponse(status = "success",
analysis_id = analysis_id,
reports = report_filenames,
timestamp = datetime.now().isoformat(),
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Report generation failed: {e}")
raise HTTPException(status_code = 500,
detail = str(e),
)
@app.get("/api/report/download/{filename}")
async def download_report(filename: str):
"""
Download a generated report
"""
if not reporter:
raise HTTPException(status_code = 503,
detail = "Service not initialized",
)
file_path = reporter.output_dir / filename
if not file_path.exists():
raise HTTPException(status_code = 404,
detail = "Report not found",
)
return FileResponse(path = str(file_path),
filename = filename,
media_type = "application/octet-stream",
)
# ==================== UTILITY ENDPOINTS ====================
@app.get("/api/domains")
async def list_domains():
"""
List all supported domains
"""
domains_list = list()
for domain in Domain:
domains_list.append({"value" : domain.value,
"name" : domain.value.replace('_', ' ').title(),
"description" : _get_domain_description(domain),
})
return {"domains": domains_list}
@app.get("/api/models")
async def list_ai_models():
"""
List all AI models that can be attributed
"""
return {"models" : [{"value" : model.value,
"name" : model.value.replace('-', ' ').replace('_', ' ').title(),
}
for model in AIModel if model not in [AIModel.HUMAN, AIModel.UNKNOWN]
]
}
# ==================== ERROR HANDLERS ====================
@app.exception_handler(HTTPException)
async def http_exception_handler(request, exc):
"""
Handle HTTP exceptions
"""
return NumpyJSONResponse(status_code = exc.status_code,
content = ErrorResponse(status = "error",
error = exc.detail,
timestamp = datetime.now().isoformat(),
).dict()
)
@app.exception_handler(Exception)
async def general_exception_handler(request, exc):
"""
Handle general exceptions
"""
logger.error(f"Unhandled exception: {exc}")
return NumpyJSONResponse(status_code = 500,
content = ErrorResponse(status = "error",
error = "Internal server error",
timestamp = datetime.now().isoformat(),
).dict()
)
# Add middleware for API request logging
@app.middleware("http")
async def log_requests(request: Request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
log_api_request(method = request.method,
path = request.url.path,
status_code = response.status_code,
duration = process_time,
ip = request.client.host if request.client else None,
)
return response
# ==================== MAIN ====================
if __name__ == "__main__":
# Configure logging
log_level = settings.LOG_LEVEL.lower()
logger.info("Starting TEXT-AUTH API Server...")
uvicorn.run("text_auth_app:app",
host = settings.HOST,
port = settings.PORT,
reload = settings.DEBUG,
log_level = log_level,
workers = 1 if settings.DEBUG else settings.WORKERS,
) |