from sentence_transformers import SentenceTransformer, util # Load pre-trained model once model = SentenceTransformer('all-MiniLM-L6-v2') def check_plagiarism(text1, text2, threshold=0.8): """ Compare two texts and return similarity score and verdict. Parameters: text1 (str): First text (e.g., student answer) text2 (str): Second text (e.g., source material) threshold (float): Similarity threshold (default = 0.8) Returns: result (str): Similarity percentage and plagiarism verdict. """ try: embedding1 = model.encode(text1, convert_to_tensor=True) embedding2 = model.encode(text2, convert_to_tensor=True) similarity_score = util.cos_sim(embedding1, embedding2).item() similarity_percent = round(similarity_score * 100, 2) if similarity_score >= threshold: verdict = "⚠️ Potential Plagiarism" else: verdict = "✅ No Significant Plagiarism Detected" return f"Similarity: {similarity_percent}%\nResult: {verdict}" except Exception as e: return f"Error during plagiarism check: {str(e)}"