smart-lms-suite / app.py
sathwikabhavaraju2005's picture
Update app.py
c3d6c3e verified
raw
history blame
5.64 kB
""import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
from sentence\_transformers import SentenceTransformer, util
import numpy as np
# ------------------------------
# Offline Quiz Generator
# ------------------------------
model\_qg = T5ForConditionalGeneration.from\_pretrained("t5-base")
tokenizer\_qg = T5Tokenizer.from\_pretrained("t5-base")
def generate\_mcqs(text, num\_questions=3):
input\_text = f"generate questions: {text}"
input\_ids = tokenizer\_qg.encode(input\_text, return\_tensors="pt", max\_length=512, truncation=True)
outputs = model\_qg.generate(input\_ids=input\_ids, max\_length=256, num\_return\_sequences=1)
return tokenizer\_qg.decode(outputs\[0], skip\_special\_tokens=True).strip()
# ------------------------------
# Weakness Analyzer
# ------------------------------
def analyze\_weakness(csv\_file):
df = pd.read\_csv(csv\_file.name)
summary = df.groupby("Topic")\["Score"].mean().sort\_values()
return summary.to\_string()
# ------------------------------
# Teaching Assistant
# ------------------------------
def chatbot\_response(message, history):
return "This is a placeholder response for now. (LLM not integrated)"
# ------------------------------
# Speech Question Solver
# ------------------------------
def speech\_answer(audio):
return "Audio to text transcription + answer generation is not included in offline version."
# ------------------------------
# PDF/YT Summarizer
# ------------------------------
def summarize\_text(text):
input\_text = f"summarize: {text.strip()}"
input\_ids = tokenizer\_qg.encode(input\_text, return\_tensors="pt", max\_length=512, truncation=True)
summary\_ids = model\_qg.generate(input\_ids, max\_length=150, min\_length=30, length\_penalty=5., num\_beams=2)
return tokenizer\_qg.decode(summary\_ids\[0], skip\_special\_tokens=True)
# ------------------------------
# Engagement Predictor (Mock)
# ------------------------------
def predict\_engagement(file):
df = pd.read\_csv(file.name)
avg\_time = df\['TimeSpent'].mean()
if avg\_time < 10:
return "⚠️ Risk of disengagement"
else:
return "βœ… Engaged student"
# ------------------------------
# Badge Generator
# ------------------------------
def generate\_badge(file):
df = pd.read\_csv(file.name)
avg\_score = df\['Score'].mean()
if avg\_score >= 80:
return "πŸ… Gold Badge"
elif avg\_score >= 50:
return "πŸ₯ˆ Silver Badge"
else:
return "πŸ₯‰ Bronze Badge"
# ------------------------------
# Translator (Mock - offline)
# ------------------------------
def translate\_text(text, target\_lang):
return f"(Translated to {target\_lang}) - This is a mock translation."
# ------------------------------
# Plagiarism Checker
# ------------------------------
model\_plag = SentenceTransformer('all-MiniLM-L6-v2')
def check\_plagiarism(text1, text2):
emb1 = model\_plag.encode(text1, convert\_to\_tensor=True)
emb2 = model\_plag.encode(text2, convert\_to\_tensor=True)
score = util.cos\_sim(emb1, emb2).item()
return f"Similarity Score: {score:.2f} - {'⚠️ Possible Plagiarism' if score > 0.8 else 'βœ… Looks Original'}"
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks() as demo:
gr.Markdown("# πŸ“š AI-Powered LMS Suite (Offline Mode)")
```
with gr.Tab("🧠 Quiz Generator"):
quiz_text = gr.Textbox(label="Content", lines=5)
quiz_slider = gr.Slider(1, 10, value=3, label="Number of Questions")
quiz_btn = gr.Button("Generate Quiz")
quiz_out = gr.Textbox(label="Generated Quiz")
quiz_btn.click(fn=generate_mcqs, inputs=[quiz_text, quiz_slider], outputs=quiz_out)
with gr.Tab("πŸ“‰ Weakness Analyzer"):
weak_file = gr.File(label="Upload CSV with Topic & Score columns")
weak_btn = gr.Button("Analyze")
weak_out = gr.Textbox(label="Analysis")
weak_btn.click(fn=analyze_weakness, inputs=weak_file, outputs=weak_out)
with gr.Tab("πŸ€– Teaching Assistant"):
chat = gr.ChatInterface(fn=chatbot_response)
with gr.Tab("🎀 Speech Q Solver"):
audio_in = gr.Audio(source="microphone", type="filepath")
audio_btn = gr.Button("Answer")
audio_out = gr.Textbox()
audio_btn.click(fn=speech_answer, inputs=audio_in, outputs=audio_out)
with gr.Tab("πŸ“„ Summarizer"):
sum_text = gr.Textbox(lines=5, label="Paste Text")
sum_btn = gr.Button("Summarize")
sum_out = gr.Textbox(label="Summary")
sum_btn.click(fn=summarize_text, inputs=sum_text, outputs=sum_out)
with gr.Tab("πŸ“Š Engagement Predictor"):
eng_file = gr.File(label="Upload CSV with TimeSpent column")
eng_btn = gr.Button("Predict")
eng_out = gr.Textbox()
eng_btn.click(fn=predict_engagement, inputs=eng_file, outputs=eng_out)
with gr.Tab("πŸ… Badge Generator"):
badge_file = gr.File(label="Upload CSV with Score column")
badge_btn = gr.Button("Get Badge")
badge_out = gr.Textbox()
badge_btn.click(fn=generate_badge, inputs=badge_file, outputs=badge_out)
with gr.Tab("🌍 Translator"):
trans_in = gr.Textbox(label="Enter Text")
trans_lang = gr.Textbox(label="Target Language")
trans_btn = gr.Button("Translate")
trans_out = gr.Textbox()
trans_btn.click(fn=translate_text, inputs=[trans_in, trans_lang], outputs=trans_out)
with gr.Tab("πŸ“‹ Plagiarism Checker"):
text1 = gr.Textbox(label="Text 1", lines=3)
text2 = gr.Textbox(label="Text 2", lines=3)
plag_btn = gr.Button("Check Similarity")
plag_out = gr.Textbox()
plag_btn.click(fn=check_plagiarism, inputs=[text1, text2], outputs=plag_out)
```
# Launch app
demo.launch()