|
import os |
|
import gradio as grimport os |
|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
from spellchecker import SpellChecker |
|
import re |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
spell = SpellChecker() |
|
|
|
|
|
nltk.download('wordnet') |
|
nltk.download('omw-1.4') |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
def predict_en(text): |
|
res = pipeline_en(text)[0] |
|
return res['label'], res['score'] |
|
|
|
|
|
def get_synonyms_nltk(word, pos): |
|
synsets = wordnet.synsets(word, pos=pos) |
|
if synsets: |
|
lemmas = synsets[0].lemmas() |
|
return [lemma.name() for lemma in lemmas] |
|
return [] |
|
|
|
|
|
def remove_redundant_words(text): |
|
doc = nlp(text) |
|
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} |
|
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] |
|
return ' '.join(filtered_text) |
|
|
|
|
|
def capitalize_sentences_and_nouns(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for sent in doc.sents: |
|
sentence = [] |
|
for token in sent: |
|
if token.i == sent.start: |
|
sentence.append(token.text.capitalize()) |
|
elif token.pos_ == "PROPN": |
|
sentence.append(token.text.capitalize()) |
|
else: |
|
sentence.append(token.text) |
|
corrected_text.append(' '.join(sentence)) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_tense_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: |
|
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text |
|
corrected_text.append(lemma) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_singular_plural_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for token in doc: |
|
if token.pos_ == "NOUN": |
|
if token.tag_ == "NN": |
|
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): |
|
corrected_text.append(token.lemma_ + 's') |
|
else: |
|
corrected_text.append(token.text) |
|
elif token.tag_ == "NNS": |
|
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): |
|
corrected_text.append(token.lemma_) |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_article_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text in ['a', 'an']: |
|
next_token = token.nbor(1) |
|
if token.text == "a" and next_token.text[0].lower() in "aeiou": |
|
corrected_text.append("an") |
|
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": |
|
corrected_text.append("a") |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def replace_with_synonym(token): |
|
pos = None |
|
if token.pos_ == "VERB": |
|
pos = wordnet.VERB |
|
elif token.pos_ == "NOUN": |
|
pos = wordnet.NOUN |
|
elif token.pos_ == "ADJ": |
|
pos = wordnet.ADJ |
|
elif token.pos_ == "ADV": |
|
pos = wordnet.ADV |
|
|
|
synonyms = get_synonyms_nltk(token.lemma_, pos) |
|
|
|
if synonyms: |
|
synonym = synonyms[0] |
|
if token.tag_ == "VBG": |
|
synonym = synonym + 'ing' |
|
elif token.tag_ == "VBD" or token.tag_ == "VBN": |
|
synonym = synonym + 'ed' |
|
elif token.tag_ == "VBZ": |
|
synonym = synonym + 's' |
|
return synonym |
|
return token.text |
|
|
|
|
|
def correct_double_negatives(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children): |
|
corrected_text.append("always") |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def ensure_subject_verb_agreement(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": |
|
if token.tag_ == "NN" and token.head.tag_ != "VBZ": |
|
corrected_text.append(token.head.lemma_ + "s") |
|
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": |
|
corrected_text.append(token.head.lemma_) |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_spelling(text): |
|
words = text.split() |
|
corrected_words = [] |
|
for word in words: |
|
corrected_word = spell.correction(word) |
|
corrected_words.append(corrected_word if corrected_word else word) |
|
return ' '.join(corrected_words) |
|
|
|
|
|
def correct_punctuation(text): |
|
text = re.sub(r'\s+([?.!,";:])', r'\1', text) |
|
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) |
|
return text |
|
|
|
|
|
def handle_possessives(text): |
|
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) |
|
return text |
|
|
|
|
|
def rephrase_with_synonyms(text): |
|
doc = nlp(text) |
|
rephrased_text = [] |
|
|
|
for token in doc: |
|
if token.pos_ == "NOUN" and token.text.lower() == "earth": |
|
rephrased_text.append("Earth") |
|
continue |
|
|
|
pos_tag = None |
|
if token.pos_ == "NOUN": |
|
pos_tag = wordnet.NOUN |
|
elif token.pos_ == "VERB": |
|
pos_tag = wordnet.VERB |
|
elif token.pos_ == "ADJ": |
|
pos_tag = wordnet.ADJ |
|
elif token.pos_ == "ADV": |
|
pos_tag = wordnet.ADV |
|
|
|
if pos_tag: |
|
synonyms = get_synonyms_nltk(token.lemma_, pos_tag) |
|
if synonyms: |
|
synonym = synonyms[0] |
|
if token.pos_ == "VERB": |
|
if token.tag_ == "VBG": |
|
synonym = synonym + 'ing' |
|
elif token.tag_ == "VBD" or token.tag_ == "VBN": |
|
synonym = synonym + 'ed' |
|
elif token.tag_ == "VBZ": |
|
synonym = synonym + 's' |
|
rephrased_text.append(synonym) |
|
else: |
|
rephrased_text.append(token.text) |
|
else: |
|
rephrased_text.append(token.text) |
|
|
|
return ' '.join(rephrased_text) |
|
|
|
|
|
def paraphrase_and_correct(text): |
|
|
|
cleaned_text = remove_redundant_words(text) |
|
|
|
|
|
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text) |
|
|
|
|
|
paraphrased_text = correct_tense_errors(paraphrased_text) |
|
paraphrased_text = correct_singular_plural_errors(paraphrased_text) |
|
paraphrased_text = correct_article_errors(paraphrased_text) |
|
paraphrased_text = correct_double_negatives(paraphrased_text) |
|
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) |
|
|
|
|
|
paraphrased_text = correct_spelling(paraphrased_text) |
|
paraphrased_text = correct_punctuation(paraphrased_text) |
|
paraphrased_text = handle_possessives(paraphrased_text) |
|
|
|
|
|
paraphrased_text = rephrase_with_synonyms(paraphrased_text) |
|
|
|
|
|
final_text = force_first_letter_capital(paraphrased_text) |
|
|
|
return final_text |
|
|
|
|
|
def process_text(input_text): |
|
ai_label, ai_score = predict_en(input_text) |
|
corrected_text = paraphrase_and_correct(input_text) |
|
return ai_label, ai_score, corrected_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_text, |
|
inputs="text", |
|
outputs=["text", "number", "text"], |
|
title="AI Content Detection and Grammar Correction", |
|
description="Enter text to detect AI-generated content and correct grammar." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
from spellchecker import SpellChecker |
|
import re |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
spell = SpellChecker() |
|
|
|
|
|
nltk.download('wordnet') |
|
nltk.download('omw-1.4') |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
def predict_en(text): |
|
res = pipeline_en(text)[0] |
|
return res['label'], res['score'] |
|
|
|
|
|
def get_synonyms_nltk(word, pos): |
|
synsets = wordnet.synsets(word, pos=pos) |
|
if synsets: |
|
lemmas = synsets[0].lemmas() |
|
return [lemma.name() for lemma in lemmas] |
|
return [] |
|
|
|
|
|
def remove_redundant_words(text): |
|
doc = nlp(text) |
|
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} |
|
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] |
|
return ' '.join(filtered_text) |
|
|
|
|
|
def capitalize_sentences_and_nouns(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for sent in doc.sents: |
|
sentence = [] |
|
for token in sent: |
|
if token.i == sent.start: |
|
sentence.append(token.text.capitalize()) |
|
elif token.pos_ == "PROPN": |
|
sentence.append(token.text.capitalize()) |
|
else: |
|
sentence.append(token.text) |
|
corrected_text.append(' '.join(sentence)) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def force_first_letter_capital(text): |
|
sentences = text.split(". ") |
|
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences] |
|
return ". ".join(capitalized_sentences) |
|
|
|
|
|
def correct_tense_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: |
|
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text |
|
corrected_text.append(lemma) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_singular_plural_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for token in doc: |
|
if token.pos_ == "NOUN": |
|
if token.tag_ == "NN": |
|
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): |
|
corrected_text.append(token.lemma_ + 's') |
|
else: |
|
corrected_text.append(token.text) |
|
elif token.tag_ == "NNS": |
|
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): |
|
corrected_text.append(token.lemma_) |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_article_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text in ['a', 'an']: |
|
next_token = token.nbor(1) |
|
if token.text == "a" and next_token.text[0].lower() in "aeiou": |
|
corrected_text.append("an") |
|
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": |
|
corrected_text.append("a") |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def replace_with_synonym(token): |
|
pos = None |
|
if token.pos_ == "VERB": |
|
pos = wordnet.VERB |
|
elif token.pos_ == "NOUN": |
|
pos = wordnet.NOUN |
|
elif token.pos_ == "ADJ": |
|
pos = wordnet.ADJ |
|
elif token.pos_ == "ADV": |
|
pos = wordnet.ADV |
|
|
|
synonyms = get_synonyms_nltk(token.lemma_, pos) |
|
|
|
if synonyms: |
|
synonym = synonyms[0] |
|
if token.tag_ == "VBG": |
|
synonym = synonym + 'ing' |
|
elif token.tag_ == "VBD" or token.tag_ == "VBN": |
|
synonym = synonym + 'ed' |
|
elif token.tag_ == "VBZ": |
|
synonym = synonym + 's' |
|
return synonym |
|
return token.text |
|
|
|
|
|
def correct_double_negatives(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children): |
|
corrected_text.append("always") |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def ensure_subject_verb_agreement(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": |
|
if token.tag_ == "NN" and token.head.tag_ != "VBZ": |
|
corrected_text.append(token.head.lemma_ + "s") |
|
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": |
|
corrected_text.append(token.head.lemma_) |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
|
|
def correct_spelling(text): |
|
words = text.split() |
|
corrected_words = [] |
|
for word in words: |
|
corrected_word = spell.correction(word) |
|
corrected_words.append(corrected_word if corrected_word else word) |
|
return ' '.join(corrected_words) |
|
|
|
|
|
def correct_punctuation(text): |
|
text = re.sub(r'\s+([?.!,";:])', r'\1', text) |
|
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) |
|
return text |
|
|
|
|
|
def handle_possessives(text): |
|
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) |
|
return text |
|
|
|
|
|
def rephrase_with_synonyms(text): |
|
doc = nlp(text) |
|
rephrased_text = [] |
|
|
|
for token in doc: |
|
pos_tag = None |
|
if token.pos_ == "NOUN": |
|
pos_tag = wordnet.NOUN |
|
elif token.pos_ == "VERB": |
|
pos_tag = wordnet.VERB |
|
elif token.pos_ == "ADJ": |
|
pos_tag = wordnet.ADJ |
|
elif token.pos_ == "ADV": |
|
pos_tag = wordnet.ADV |
|
|
|
if pos_tag: |
|
synonyms = get_synonyms_nltk(token.text, pos_tag) |
|
if synonyms: |
|
synonym = synonyms[0] |
|
if token.pos_ == "VERB": |
|
if token.tag_ == "VBG": |
|
synonym = synonym + 'ing' |
|
elif token.tag_ == "VBD" or token.tag_ == "VBN": |
|
synonym = synonym + 'ed' |
|
elif token.tag_ == "VBZ": |
|
synonym = synonym + 's' |
|
elif token.pos_ == "NOUN" and token.tag_ == "NNS": |
|
synonym += 's' if not synonym.endswith('s') else "" |
|
rephrased_text.append(synonym) |
|
else: |
|
rephrased_text.append(token.text) |
|
else: |
|
rephrased_text.append(token.text) |
|
|
|
return ' '.join(rephrased_text) |
|
|
|
|
|
def paraphrase_and_correct(text): |
|
|
|
cleaned_text = remove_redundant_words(text) |
|
|
|
|
|
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text) |
|
|
|
|
|
paraphrased_text = correct_tense_errors(paraphrased_text) |
|
paraphrased_text = correct_singular_plural_errors(paraphrased_text) |
|
paraphrased_text = correct_article_errors(paraphrased_text) |
|
paraphrased_text = correct_double_negatives(paraphrased_text) |
|
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) |
|
|
|
|
|
paraphrased_text = correct_spelling(paraphrased_text) |
|
paraphrased_text = correct_punctuation(paraphrased_text) |
|
paraphrased_text = handle_possessives(paraphrased_text) |
|
|
|
|
|
paraphrased_text = rephrase_with_synonyms(paraphrased_text) |
|
|
|
|
|
final_text = force_first_letter_capital(paraphrased_text) |
|
|
|
return final_text |
|
|
|
|
|
def process_text(input_text): |
|
ai_label, ai_score = predict_en(input_text) |
|
corrected_text = paraphrase_and_correct(input_text) |
|
return ai_label, ai_score, corrected_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_text, |
|
inputs="text", |
|
outputs=["text", "number", "text"], |
|
title="AI Content Detection and Grammar Correction", |
|
description="Enter text to detect AI-generated content and correct grammar." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|