File size: 4,867 Bytes
9249c61 bbfcb06 9249c61 57150e6 605f99d cd8f19e 605f99d 16768e1 532238c 6f0c220 532238c 605f99d 769fd81 0671f11 2fa778e 532238c 769fd81 9249c61 4144a72 9249c61 59df66e 9249c61 951a319 e15f964 f0681cd 0671f11 b2d7c93 f0681cd 532238c 0671f11 f0681cd 9249c61 605f99d b6a7ed3 951a319 605f99d 2bb938a 695c876 471fe17 f0681cd 471fe17 ae1aa6b 9249c61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import pandas as pd
import plotly.express as px
data = pd.read_csv('data/env_disclosure_data.csv')
data = data.drop('Unnamed: 0', axis=1)
data['Environmental Transparency'] = data['Environmental Transparency'].fillna('None')
data.Organization = data.Organization.replace('University of Montreal / Université de Montréal', 'University of Montreal')
data.Organization = data.Organization.replace('University of Washington,Allen Institute for AI', 'Allen Institute for AI')
data.Organization = data.Organization.replace('Allen Institute for AI,University of Washington', 'Allen Institute for AI')
data.Organization = data.Organization.replace(['Google', 'DeepMind', 'Google DeepMind','Google Brain','Google Research'], 'Alphabet')
data.Organization = data.Organization.replace(['Meta AI','Facebook AI Research','Facebook AI', 'Facebook'], 'Meta')
data.Organization = data.Organization.replace(['Microsoft','Microsoft Research'], 'Microsoft')
data.Year = data.Year.replace(['2025'], 'Q1 2025')
color_discrete_map = {'Direct': '#2ca02c', 'Indirect': '#1f77b4', 'None':'#d62728'}
organizations=['Alphabet','Allen Institute for AI', 'Alibaba', 'Amazon', 'Anthropic', 'Apple', 'Baidu', 'Carnegie Mellon University (CMU)', \
'DeepSeek', 'Meta', 'Microsoft', 'Mistral AI', 'NVIDIA', 'OpenAI', 'Salesforce Research','Stanford University', \
'University of California (UC) Berkeley', 'University of Montreal', 'University of Oxford', 'University of Toronto' ]
def generate_figure(org_name):
org_data = data[data['Organization'] == org_name]
model_counts = org_data.groupby('Year')[['Model','Environmental Transparency']].value_counts().reset_index()
model_counts.columns = ['Year', 'Model','Environmental Transparency','Count']
fig = px.bar(model_counts, x="Year", y="Count",color='Environmental Transparency', color_discrete_map =color_discrete_map, hover_data=["Model"])
fig.update_layout(xaxis_type='category')
fig.update_xaxes(categoryorder="category ascending")
return fig
with gr.Blocks() as demo:
gr.Markdown("# Environmental Transparency Explorer Tool 🕵️♀️🌎")
gr.Markdown("## Explore the data from 'Misinformation by Omission: The Need for More Environmental Transparency in AI'")
with gr.Accordion('Methodology', open=False):
gr.Markdown('We analyzed Epoch AI\'s "Notable AI Models" dataset, which tracks information on “models that were state of the art, highly cited, \
or otherwise historically notable” released over time. We selected the time period starting in 2010 as this is the beginning of the modern “deep learning era” \
(as defined by Epoch AI), which is representative of the types of AI models currently trained and deployed, including all 754 models from 2010 \
to the first quarter of 2025 in our analysis. We examined the level of environmental impact transparency for each model based on key information \
from the Epoch AI dataset (e.g., model accessibility, training compute estimation method) as well as from individual model release content \
(e.g., paper, model card, announcement).')
with gr.Row():
with gr.Column():
gr.Markdown("### All Data")
counts = data.groupby('Year')[['Model','Environmental Transparency']].value_counts().reset_index()
counts.columns = ['Year', 'Model','Environmental Transparency','Count']
fig2 = px.bar(counts, x="Year", y="Count",color='Environmental Transparency', color_discrete_map =color_discrete_map, hover_data=["Model"])
fig2.update_layout(xaxis_type='category')
fig2.update_xaxes(categoryorder="category ascending")
plt2 = gr.Plot(fig2)
with gr.Row():
with gr.Column(scale=1):
org_choice= gr.Dropdown(organizations, value="", label="Organizations", info="Pick an organization to explore their environmental disclosures", interactive=True)
gr.Markdown('The 3 transparency categories are:')
gr.Markdown('**Direct Disclosure**: Developers explicitly reported energy or GHG emissions, e.g., using hardware TDP, country average carbon intensity or measurements.')
gr.Markdown('**Indirect Disclosure**: Developers provided training compute data or released their model weights, allowing external estimates of training or inference impacts.')
gr.Markdown('**No Disclosure**: Environmental impact data was not publicly released and estimation approaches (as noted in Indirect Disclosure) were not possible.')
with gr.Column(scale=4):
gr.Markdown("### Data by Organization")
fig = generate_figure(org_choice)
plt = gr.Plot(fig)
org_choice.select(generate_figure, inputs=[org_choice], outputs=[plt])
demo.launch()
|