File size: 4,867 Bytes
9249c61
 
bbfcb06
9249c61
 
 
57150e6
605f99d
 
 
 
 
 
cd8f19e
605f99d
16768e1
 
 
532238c
6f0c220
532238c
605f99d
769fd81
 
0671f11
 
 
2fa778e
532238c
769fd81
9249c61
4144a72
 
9249c61
59df66e
9249c61
951a319
e15f964
 
 
 
 
 
f0681cd
 
 
0671f11
 
b2d7c93
f0681cd
532238c
0671f11
f0681cd
9249c61
605f99d
b6a7ed3
951a319
 
 
 
605f99d
2bb938a
695c876
471fe17
f0681cd
471fe17
ae1aa6b
9249c61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
import pandas as pd
import plotly.express as px

data = pd.read_csv('data/env_disclosure_data.csv')
data = data.drop('Unnamed: 0', axis=1)
data['Environmental Transparency'] = data['Environmental Transparency'].fillna('None')
data.Organization = data.Organization.replace('University of Montreal / Université de Montréal', 'University of Montreal')
data.Organization = data.Organization.replace('University of Washington,Allen Institute for AI', 'Allen Institute for AI')
data.Organization = data.Organization.replace('Allen Institute for AI,University of Washington', 'Allen Institute for AI')
data.Organization = data.Organization.replace(['Google', 'DeepMind', 'Google DeepMind','Google Brain','Google Research'], 'Alphabet')
data.Organization = data.Organization.replace(['Meta AI','Facebook AI Research','Facebook AI', 'Facebook'], 'Meta')
data.Organization = data.Organization.replace(['Microsoft','Microsoft Research'], 'Microsoft')
data.Year = data.Year.replace(['2025'], 'Q1 2025')

color_discrete_map = {'Direct': '#2ca02c', 'Indirect':  '#1f77b4', 'None':'#d62728'}


organizations=['Alphabet','Allen Institute for AI', 'Alibaba', 'Amazon', 'Anthropic', 'Apple', 'Baidu', 'Carnegie Mellon University (CMU)', \
               'DeepSeek', 'Meta', 'Microsoft', 'Mistral AI', 'NVIDIA',  'OpenAI', 'Salesforce Research','Stanford University', \
               'University of California (UC) Berkeley', 'University of Montreal', 'University of Oxford', 'University of Toronto' ]

def generate_figure(org_name):
    org_data = data[data['Organization'] == org_name]
    model_counts = org_data.groupby('Year')[['Model','Environmental Transparency']].value_counts().reset_index()
    model_counts.columns = ['Year', 'Model','Environmental Transparency','Count']
    fig = px.bar(model_counts, x="Year", y="Count",color='Environmental Transparency', color_discrete_map =color_discrete_map, hover_data=["Model"])
    fig.update_layout(xaxis_type='category')
    fig.update_xaxes(categoryorder="category ascending")
    return fig



with gr.Blocks() as demo:
    gr.Markdown("# Environmental Transparency Explorer Tool 🕵️‍♀️🌎")
    gr.Markdown("## Explore the data from 'Misinformation by Omission: The Need for More Environmental Transparency in AI'")
    with gr.Accordion('Methodology', open=False):
        gr.Markdown('We analyzed Epoch AI\'s "Notable AI Models" dataset, which tracks information on “models that were state of the art, highly cited, \
        or otherwise historically notable” released over time. We selected the time period starting in 2010 as this is the beginning of the modern “deep learning era” \
        (as defined by Epoch AI), which is representative of the types of AI models currently trained and deployed, including all 754 models from 2010 \
        to the first quarter of 2025 in our analysis. We examined the level of environmental impact transparency for each model based on key information \
        from the Epoch AI dataset (e.g., model accessibility, training compute estimation method) as well as from individual model release content \
        (e.g., paper, model card, announcement).')
    with gr.Row():
        with gr.Column():
            gr.Markdown("### All Data")
            counts = data.groupby('Year')[['Model','Environmental Transparency']].value_counts().reset_index()
            counts.columns = ['Year', 'Model','Environmental Transparency','Count']
            fig2 = px.bar(counts, x="Year", y="Count",color='Environmental Transparency', color_discrete_map =color_discrete_map, hover_data=["Model"])
            fig2.update_layout(xaxis_type='category')
            fig2.update_xaxes(categoryorder="category ascending")
       
            plt2 = gr.Plot(fig2)
    with gr.Row():
        with gr.Column(scale=1):
            org_choice= gr.Dropdown(organizations, value="", label="Organizations", info="Pick an organization to explore their environmental disclosures", interactive=True)
            gr.Markdown('The 3 transparency categories are:')
            gr.Markdown('**Direct Disclosure**: Developers explicitly reported energy or GHG emissions, e.g., using hardware TDP, country average carbon intensity or measurements.')
            gr.Markdown('**Indirect Disclosure**: Developers provided training compute data or released their model weights, allowing external estimates of training or inference impacts.')
            gr.Markdown('**No Disclosure**: Environmental impact data was not publicly released and estimation approaches (as noted in Indirect Disclosure) were not possible.')
        with gr.Column(scale=4):
            gr.Markdown("### Data by Organization")
            fig = generate_figure(org_choice)
            plt = gr.Plot(fig)

    org_choice.select(generate_figure, inputs=[org_choice], outputs=[plt])

demo.launch()