Spaces:
Sleeping
Sleeping
File size: 1,083 Bytes
d86fc01 1c18d40 d86fc01 360a4d3 d86fc01 360a4d3 1c18d40 d86fc01 360a4d3 52808f5 360a4d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
app = FastAPI()
app.add_middleware(
CORSMiddleware, allow_origins=["*"], allow_credentials=False,
allow_methods=["*"], allow_headers=["*"]
)
model_name = "NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
class QueryRequest(BaseModel):
prompt: str
@app.post("/api/generate-story")
def generate_story(req: QueryRequest):
if not req.prompt.strip():
raise HTTPException(status_code=400, detail="Prompt must not be empty")
inputs = tokenizer(req.prompt, return_tensors="pt", truncation=True)
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.9,
top_p=0.95,
repetition_penalty=1.2,
do_sample=True
)
return {"story": tokenizer.decode(outputs[0], skip_special_tokens=True)}
|