Spaces:
Running
Running
File size: 5,145 Bytes
b485e09 f9f1c14 b485e09 15ab5d3 f9f1c14 b485e09 f9f1c14 b485e09 f9f1c14 b485e09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# app.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torchvision.transforms as T
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
from ultralytics import YOLO
from transformers import ResNetModel
import cv2
from huggingface_hub import hf_hub_download
class FlakeLayerClassifier(nn.Module):
def __init__(self, num_materials, material_dim, num_classes=4, dropout_prob=0.1, freeze_cnn=False):
super().__init__()
self.cnn = ResNetModel.from_pretrained("microsoft/resnet-18")
if freeze_cnn:
for p in self.cnn.parameters():
p.requires_grad = False
img_feat_dim = self.cnn.config.hidden_sizes[-1]
self.material_embedding = nn.Embedding(num_materials, material_dim)
self.dropout = nn.Dropout(dropout_prob)
self.fc_img = nn.Sequential(
nn.Linear(img_feat_dim, img_feat_dim),
nn.ReLU(inplace=True),
self.dropout,
nn.Linear(img_feat_dim, num_classes)
)
combined_dim = img_feat_dim + material_dim
self.fc_comb = nn.Sequential(
nn.Linear(combined_dim, combined_dim),
nn.ReLU(inplace=True),
self.dropout,
nn.Linear(combined_dim, num_classes)
)
def forward(self, pixel_values, material=None):
outputs = self.cnn(pixel_values=pixel_values)
img_feats = outputs.pooler_output.view(outputs.pooler_output.size(0), -1)
if material is None:
return self.fc_img(img_feats)
mat_emb = self.material_embedding(material)
combined = torch.cat([img_feats, mat_emb], dim=1)
return self.fc_comb(combined)
def calibration(source_img, target_img):
source_lab = cv2.cvtColor(source_img, cv2.COLOR_BGR2LAB)
target_lab = cv2.cvtColor(target_img, cv2.COLOR_BGR2LAB)
for i in range(3):
src_mean, src_std = cv2.meanStdDev(source_lab[:, :, i])
tgt_mean, tgt_std = cv2.meanStdDev(target_lab[:, :, i])
target_lab[:, :, i] = (
(target_lab[:, :, i] - tgt_mean) * (src_std / tgt_std) + src_mean
).clip(0, 255)
corrected_img = cv2.cvtColor(target_lab, cv2.COLOR_LAB2BGR)
return corrected_img.astype(np.uint8)
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLO detector
#yolo = YOLO("/home/sankalp/flake_classification/models/best.pt")
#yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo11n_synthetic_runs/exp1/weights/best.pt")
#yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo_runs/yolo11l_flake_runs/weights/best.pt")
yolo_path = hf_hub_download(repo_id="sanpdy/yolo-flake-detector", filename="yolo-flake-detector-MSU.pt", token=False)
yolo = YOLO(yolo_path)
yolo.conf = 0.5
# Load classifier weights
classifier_path = hf_hub_download(
repo_id="sanpdy/flake-classifier",
filename="flake-classifier.pth",
token=False
)
ckpt = torch.load(classifier_path, map_location=device)
num_classes = len(ckpt["class_to_idx"])
classifier = FlakeLayerClassifier(
num_materials=num_classes,
material_dim=64,
num_classes=num_classes,
dropout_prob=0.1,
freeze_cnn=False
).to(device)
classifier.load_state_dict(ckpt["model_state_dict"])
classifier.eval()
# Image processing transforms
clf_tf = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
try:
FONT = ImageFont.truetype("arial.ttf", 20)
except IOError:
FONT = ImageFont.load_default()
# Inference + drawing
def detect_and_classify(image: Image.Image):
#image = calibration(
# np.array(Image.open("/home/sankalp/gradio_flake_app/quantum-flake-pipeline/template/image.png")),
#np.array(image.convert("RGB")),
#)
#image = Image.fromarray(image)
img_rgb = np.array(image.convert("RGB"))
img_bgr = img_rgb[:, :, ::-1]
results = yolo(img_bgr, device=str(device))
boxes = results[0].boxes.xyxy.cpu().numpy()
scores = results[0].boxes.conf.cpu().numpy()
draw = ImageDraw.Draw(image)
for (x1, y1, x2, y2), conf in zip(boxes, scores):
crop = image.crop((x1, y1, x2, y2))
inp = clf_tf(crop).unsqueeze(0).to(device) # (1,C,H,W)
with torch.no_grad():
logits = classifier(pixel_values=inp)
pred = logits.argmax(1).item()
prob = F.softmax(logits, dim=1)[0, pred].item()
label = f"Layer {pred+1} ({prob:.2f})"
# draw
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
draw.text((x1, max(0, y1-18)), label, fill="red", font=FONT)
return image
# Gradio UI
demo = gr.Interface(
fn=detect_and_classify,
inputs=gr.Image(type="pil", label="Upload Flake Image"),
outputs=gr.Image(type="pil", label="Annotated Output"),
title="Flake Detection + Layer Classification",
description="Upload an image β YOLO finds flakes β ResNet-18 head classifies their layer.",
)
if __name__ == "__main__":
demo.launch(share=True)
|