File size: 5,145 Bytes
b485e09
 
 
 
 
 
 
 
 
 
 
f9f1c14
 
b485e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15ab5d3
f9f1c14
 
b485e09
 
 
f9f1c14
 
 
 
b485e09
f9f1c14
 
b485e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# app.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torchvision.transforms as T
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
from ultralytics import YOLO
from transformers import ResNetModel
import cv2
from huggingface_hub import hf_hub_download


class FlakeLayerClassifier(nn.Module):
    def __init__(self, num_materials, material_dim, num_classes=4, dropout_prob=0.1, freeze_cnn=False):
        super().__init__()
        self.cnn = ResNetModel.from_pretrained("microsoft/resnet-18")
        if freeze_cnn:
            for p in self.cnn.parameters():
                p.requires_grad = False

        img_feat_dim = self.cnn.config.hidden_sizes[-1]
        self.material_embedding = nn.Embedding(num_materials, material_dim)
        self.dropout = nn.Dropout(dropout_prob)

        self.fc_img = nn.Sequential(
            nn.Linear(img_feat_dim, img_feat_dim),
            nn.ReLU(inplace=True),
            self.dropout,
            nn.Linear(img_feat_dim, num_classes)
        )

        combined_dim = img_feat_dim + material_dim
        self.fc_comb = nn.Sequential(
            nn.Linear(combined_dim, combined_dim),
            nn.ReLU(inplace=True),
            self.dropout,
            nn.Linear(combined_dim, num_classes)
        )

    def forward(self, pixel_values, material=None):
        outputs = self.cnn(pixel_values=pixel_values)
        img_feats = outputs.pooler_output.view(outputs.pooler_output.size(0), -1)

        if material is None:
            return self.fc_img(img_feats)

        mat_emb = self.material_embedding(material)
        combined = torch.cat([img_feats, mat_emb], dim=1)
        return self.fc_comb(combined)

def calibration(source_img, target_img):
        source_lab = cv2.cvtColor(source_img, cv2.COLOR_BGR2LAB)
        target_lab = cv2.cvtColor(target_img, cv2.COLOR_BGR2LAB)

        for i in range(3):
            src_mean, src_std = cv2.meanStdDev(source_lab[:, :, i])
            tgt_mean, tgt_std = cv2.meanStdDev(target_lab[:, :, i])

            target_lab[:, :, i] = (
                (target_lab[:, :, i] - tgt_mean) * (src_std / tgt_std) + src_mean
            ).clip(0, 255)

        corrected_img = cv2.cvtColor(target_lab, cv2.COLOR_LAB2BGR)
        return corrected_img.astype(np.uint8)


device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load YOLO detector
#yolo = YOLO("/home/sankalp/flake_classification/models/best.pt")
#yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo11n_synthetic_runs/exp1/weights/best.pt")
#yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo_runs/yolo11l_flake_runs/weights/best.pt")
yolo_path = hf_hub_download(repo_id="sanpdy/yolo-flake-detector", filename="yolo-flake-detector-MSU.pt", token=False)
yolo = YOLO(yolo_path)
yolo.conf = 0.5

# Load classifier weights
classifier_path = hf_hub_download(
    repo_id="sanpdy/flake-classifier",
    filename="flake-classifier.pth",
    token=False
)
ckpt = torch.load(classifier_path, map_location=device)

num_classes   = len(ckpt["class_to_idx"])
classifier    = FlakeLayerClassifier(
    num_materials=num_classes,
    material_dim=64,
    num_classes=num_classes,
    dropout_prob=0.1,
    freeze_cnn=False
).to(device)
classifier.load_state_dict(ckpt["model_state_dict"])
classifier.eval()

# Image processing transforms
clf_tf = T.Compose([
    T.Resize((224, 224)),
    T.ToTensor(),
    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

try:
    FONT = ImageFont.truetype("arial.ttf", 20)
except IOError:
    FONT = ImageFont.load_default()

# Inference + drawing
def detect_and_classify(image: Image.Image):
    #image = calibration(
       # np.array(Image.open("/home/sankalp/gradio_flake_app/quantum-flake-pipeline/template/image.png")),
        #np.array(image.convert("RGB")),
    #)
    #image = Image.fromarray(image)
    img_rgb = np.array(image.convert("RGB"))
    img_bgr = img_rgb[:, :, ::-1]
    results = yolo(img_bgr, device=str(device))
    boxes  = results[0].boxes.xyxy.cpu().numpy()
    scores = results[0].boxes.conf.cpu().numpy()

    draw = ImageDraw.Draw(image)
    for (x1, y1, x2, y2), conf in zip(boxes, scores):
        crop = image.crop((x1, y1, x2, y2))
        inp  = clf_tf(crop).unsqueeze(0).to(device)  # (1,C,H,W)

        with torch.no_grad():
            logits = classifier(pixel_values=inp)
            pred   = logits.argmax(1).item()
            prob   = F.softmax(logits, dim=1)[0, pred].item()

        label = f"Layer {pred+1} ({prob:.2f})"
        # draw
        draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
        draw.text((x1, max(0, y1-18)), label, fill="red", font=FONT)

    return image

# Gradio UI
demo = gr.Interface(
    fn=detect_and_classify,
    inputs=gr.Image(type="pil", label="Upload Flake Image"),
    outputs=gr.Image(type="pil", label="Annotated Output"),
    title="Flake Detection + Layer Classification",
    description="Upload an image β†’ YOLO finds flakes β†’ ResNet-18 head classifies their layer.",
)

if __name__ == "__main__":
    demo.launch(share=True)