# content_analysis.py import re from typing import List, Dict, Any from collections import Counter import language_tool_python import traceback # Import utility from text_utils from text_utils import convert_markdown_to_plain_text def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]: return {term: term.lower() in full_text.lower() for term in search_terms} def label_authors(full_text: str) -> str: author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)" match = re.search(author_line_regex, full_text, re.MULTILINE) if match: authors = match.group(1).strip() return full_text.replace(authors, f"Authors: {authors}") return full_text def check_metadata(plain_text: str) -> Dict[str, Any]: return { "author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)), "list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)), "keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)), "word_count": len(plain_text.split()) or "Missing" } def check_disclosures(plain_text: str) -> Dict[str, bool]: search_terms = [ "conflict of interest statement", "ethics statement", "funding statement", "data access statement" ] results = check_text_presence(plain_text, search_terms) has_author_contribution = ("author contribution statement" in plain_text.lower() or "author contributions statement" in plain_text.lower()) results["author contribution statement"] = has_author_contribution return results def check_figures_and_tables(plain_text: str) -> Dict[str, bool]: return { "figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)), "figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)), "tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE)) } def check_references_summary(plain_text: str) -> Dict[str, Any]: abstract_candidate = plain_text[:2000] return { "old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)), "citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate, re.IGNORECASE)) or \ bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)), "reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)), "self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE)) } def check_structure(plain_text: str) -> Dict[str, bool]: text_lower = plain_text.lower() return { "imrad_structure": all(section.lower() in text_lower for section in ["introduction", "method", "result", "discussion"]), "abstract_structure": "structured abstract" in text_lower } def check_language_issues_and_regex(markdown_text_from_pdf: str) -> Dict[str, Any]: if not markdown_text_from_pdf.strip(): return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""} plain_text_from_markdown = convert_markdown_to_plain_text(markdown_text_from_pdf) text_for_analysis = plain_text_from_markdown.replace('\n', ' ') text_for_analysis = re.sub(r'\s+', ' ', text_for_analysis).strip() if not text_for_analysis: return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""} text_for_analysis_lower = text_for_analysis.lower() abstract_match = re.search(r'\babstract\b', text_for_analysis_lower) content_start_index = abstract_match.start() if abstract_match else 0 if abstract_match: print(f"Found 'abstract' at index {content_start_index}") else: print(f"Did not find 'abstract', starting language analysis from index 0") references_match = re.search(r'\breferences\b', text_for_analysis_lower) bibliography_match = re.search(r'\bbibliography\b', text_for_analysis_lower) content_end_index = len(text_for_analysis) if references_match and bibliography_match: content_end_index = min(references_match.start(), bibliography_match.start()) print(f"Found 'references' at {references_match.start()} and 'bibliography' at {bibliography_match.start()}. Using {content_end_index} as end boundary.") elif references_match: content_end_index = references_match.start() print(f"Found 'references' at {content_end_index}. Using it as end boundary.") elif bibliography_match: content_end_index = bibliography_match.start() print(f"Found 'bibliography' at {content_end_index}. Using it as end boundary.") else: print(f"Did not find 'references' or 'bibliography'. Language analysis up to end of text (index {content_end_index}).") if content_start_index >= content_end_index: print(f"Warning: Content start index ({content_start_index}) is not before content end index ({content_end_index}). No language issues will be reported from this range.") tool = None processed_issues: List[Dict[str, Any]] = [] try: tool = language_tool_python.LanguageTool('en-US') raw_lt_matches = tool.check(text_for_analysis) lt_issues_in_range = 0 for idx, match in enumerate(raw_lt_matches): if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": continue if not (content_start_index <= match.offset < content_end_index): continue lt_issues_in_range +=1 context_str = text_for_analysis[match.offset : match.offset + match.errorLength] processed_issues.append({ '_internal_id': f"lt_{idx}", 'ruleId': match.ruleId, 'message': match.message, 'context_text': context_str, 'offset_in_text': match.offset, 'error_length': match.errorLength, 'replacements_suggestion': match.replacements[:3] if match.replacements else [], 'category_name': match.category, 'is_mapped_to_pdf': False, 'pdf_coordinates_list': [], 'mapped_page_number': -1 }) print(f"LanguageTool found {len(raw_lt_matches)} raw issues, {lt_issues_in_range} issues within defined content range.") regex_pattern = r'\b(\w+)\[(\d+)\]' regex_matches = list(re.finditer(regex_pattern, text_for_analysis)) regex_issues_in_range = 0 for reg_idx, match in enumerate(regex_matches): if not (content_start_index <= match.start() < content_end_index): continue regex_issues_in_range += 1 word = match.group(1); number = match.group(2) processed_issues.append({ '_internal_id': f"regex_{reg_idx}", 'ruleId': "SPACE_BEFORE_BRACKET", 'message': f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.", 'context_text': text_for_analysis[match.start():match.end()], 'offset_in_text': match.start(), 'error_length': match.end() - match.start(), 'replacements_suggestion': [f"{word} [{number}]"], 'category_name': "Formatting", 'is_mapped_to_pdf': False, 'pdf_coordinates_list': [], 'mapped_page_number': -1 }) print(f"Regex check found {len(regex_matches)} raw matches, {regex_issues_in_range} issues within defined content range.") return { "total_issues": len(processed_issues), "issues_list": processed_issues, "text_used_for_analysis": text_for_analysis } except Exception as e: print(f"Error in check_language_issues_and_regex: {e}") traceback.print_exc() return {"error": str(e), "total_issues": 0, "issues_list": [], "text_used_for_analysis": text_for_analysis} finally: if tool: tool.close() def check_figure_order(plain_text: str) -> Dict[str, Any]: figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)' figure_references_str = re.findall(figure_pattern, plain_text, re.IGNORECASE) valid_figure_numbers_int = [int(num_str) for num_str in figure_references_str if num_str.isdigit()] unique_sorted_figures = sorted(list(set(valid_figure_numbers_int))) is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] for i in range(len(unique_sorted_figures)-1)) missing_figures = [] if unique_sorted_figures: expected_figures = set(range(1, max(unique_sorted_figures) + 1)) missing_figures = sorted(list(expected_figures - set(unique_sorted_figures))) counts = Counter(valid_figure_numbers_int) duplicate_refs = [num for num, count in counts.items() if count > 1] return { "sequential_order_of_unique_figures": is_sequential, "figure_count_unique": len(unique_sorted_figures), "missing_figures_in_sequence_to_max": missing_figures, "figure_order_as_encountered": valid_figure_numbers_int, "duplicate_references_to_same_figure_number": duplicate_refs } def check_reference_order(plain_text: str) -> Dict[str, Any]: reference_pattern = r'\[(\d+)\]' references_str = re.findall(reference_pattern, plain_text) ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit()] max_ref_val = 0 out_of_order_details = [] if ref_numbers_int: max_ref_val = max(ref_numbers_int) current_max_seen_in_text = 0 for i, ref in enumerate(ref_numbers_int): if ref < current_max_seen_in_text : out_of_order_details.append({ "position_in_text_occurrences": i + 1, "value": ref, "previous_max_value_seen": current_max_seen_in_text, "message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited." }) current_max_seen_in_text = max(current_max_seen_in_text, ref) all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set() used_refs_set = set(ref_numbers_int) missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set)) is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1)) return { "max_reference_number_cited": max_ref_val, "out_of_order_citations_details": out_of_order_details, "missing_references_up_to_max_cited": missing_refs_in_sequence_to_max, "is_citation_order_non_decreasing_in_text": is_ordered_in_text }