Spaces:
Running
Running
File size: 12,233 Bytes
ae1809b 83907f9 ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf ae1809b d2df5bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import cv2
import numpy as np
from src.hand_tracker import HandTracker
from src.face_mesh_tracker import FaceMeshTracker
class OpenCVUtils:
def __init__(self) -> None:
self.hand_tracker = HandTracker(
num_hands=2,
min_hand_detection_confidence=0.7,
min_hand_presence_confidence=0.7,
min_tracking_confidence=0.7,
)
self.face_mesh_tracker = FaceMeshTracker(
num_faces=1,
min_face_detection_confidence=0.7,
min_face_presence_confidence=0.7,
min_tracking_confidence=0.7,
)
# Initialize ArUco dictionaries
self.aruco_dicts = {
"DICT_4X4_50": cv2.aruco.DICT_4X4_50,
"DICT_4X4_100": cv2.aruco.DICT_4X4_100,
"DICT_4X4_250": cv2.aruco.DICT_4X4_250,
"DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
"DICT_5X5_50": cv2.aruco.DICT_5X5_50,
"DICT_5X5_100": cv2.aruco.DICT_5X5_100,
"DICT_5X5_250": cv2.aruco.DICT_5X5_250,
"DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
"DICT_6X6_50": cv2.aruco.DICT_6X6_50,
"DICT_6X6_100": cv2.aruco.DICT_6X6_100,
"DICT_6X6_250": cv2.aruco.DICT_6X6_250,
"DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
"DICT_7X7_50": cv2.aruco.DICT_7X7_50,
"DICT_7X7_100": cv2.aruco.DICT_7X7_100,
"DICT_7X7_250": cv2.aruco.DICT_7X7_250,
"DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
"DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
}
def detect_faces(self, frame: np.ndarray, draw: bool = True) -> np.ndarray:
"""
Detect a face in the frame with the face mesh tracker of mediapipe
:param frame: The frame to detect the face
:param draw: If the output should be drawn
"""
return self.face_mesh_tracker.detect(frame, draw=draw)
def detect_hands(self, frame: np.ndarray, draw: bool = True) -> np.ndarray:
"""
Detect a hand in the frame with the hand tracker of mediapipe
:param frame: The frame to detect the hand
:param draw: If the output should be drawn
"""
result = self.hand_tracker.detect(frame, draw=draw)
return result
def detect_aruco_markers(
self, frame: np.ndarray, dict_type: str = "DICT_6X6_250", draw: bool = True
) -> np.ndarray:
"""
Detect ArUco markers in the frame
:param frame: The frame to detect ArUco markers
:param dict_type: The ArUco dictionary type to use for detection
:param draw: If the detected markers should be drawn on the frame
:return: The frame with detected ArUco markers drawn (if draw=True)
"""
# Create a copy of the frame to avoid modifying the original
output = frame.copy()
# Convert the image to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Get the ArUco dictionary
aruco_dict = cv2.aruco.getPredefinedDictionary(getattr(cv2.aruco, dict_type))
# Set the detection parameters (using default values)
parameters = cv2.aruco.DetectorParameters()
# Detect ArUco markers
corners, ids, rejected = cv2.aruco.detectMarkers(
gray, aruco_dict, parameters=parameters
)
# If markers are detected and draw is True
if draw and ids is not None:
# Draw the detected markers
cv2.aruco.drawDetectedMarkers(output, corners, ids)
# For each marker, draw additional information
for i, corner in enumerate(corners):
# Get the center of the marker
c = corner[0]
center = (int(c[:, 0].mean()), int(c[:, 1].mean()))
# Draw the marker ID
cv2.putText(
output,
f"ID: {ids[i][0]}",
(center[0], center[1] - 15),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 0),
2,
)
return output
def apply_color_filter(
self, frame: np.ndarray, lower_bound: list, upper_bound: list
) -> np.ndarray:
"""
Apply a color filter to the frame
:param frame: The frame to apply the filter
:param lower_bound: The lower bound of the color filter in HSV
:param upper_bound: The upper bound of the color filter in HSV
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower_bound = np.array([lower_bound[0], lower_bound[1], lower_bound[2]])
upper_bound = np.array([upper_bound[0], upper_bound[1], upper_bound[2]])
mask = cv2.inRange(hsv, lower_bound, upper_bound)
return cv2.bitwise_and(frame, frame, mask=mask)
def apply_edge_detection(
self, frame: np.ndarray, lower_canny: int = 100, upper_canny: int = 200
) -> np.ndarray:
"""
Apply a edge detection to the frame
:param frame: The frame to apply the filter
:param lower_canny: The lower bound of the canny edge detection
:param upper_canny: The upper bound of the canny edge detection
"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, lower_canny, upper_canny)
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
def apply_contour_detection(self, frame: np.ndarray) -> np.ndarray:
"""
Apply a contour detection to the frame
:param frame: The frame to apply the filter
"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, (0, 255, 0), 3)
return frame
def blur_image(self, image: np.ndarray, kernel_size: int = 5) -> np.ndarray:
"""
Apply a blur to the image
:param image: The image to apply the blur
:param kernel_size: The kernel size of the blur
"""
if kernel_size % 2 == 0:
kernel_size += 1
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
def rotate_image(self, image: np.ndarray, angle: int = 0) -> np.ndarray:
"""
Rotate the image
:param image: The image to rotate
:param angle: The angle to rotate the image
"""
(h, w) = image.shape[:2]
center = (w / 2, h / 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
return cv2.warpAffine(image, M, (w, h))
def resize_image(
self, image: np.ndarray, width: int = None, height: int = None
) -> np.ndarray:
"""
Resize the image
:param image: The image to resize
:param width: The width of the new image
:param height: The height of the new image
"""
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
return cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
def pencil_sketch(
self,
image: np.ndarray,
sigma_s: int = 60,
sigma_r: float = 0.07,
shade_factor: float = 0.05,
) -> np.ndarray:
# Converte para sketch preto e branco
gray, sketch = cv2.pencilSketch(
image, sigma_s=sigma_s, sigma_r=sigma_r, shade_factor=shade_factor
)
return sketch
def stylization(
self, image: np.ndarray, sigma_s: int = 60, sigma_r: float = 0.45
) -> np.ndarray:
# Efeito de pintura estilizada
return cv2.stylization(image, sigma_s=sigma_s, sigma_r=sigma_r)
def cartoonify(self, image: np.ndarray) -> np.ndarray:
# Cartoon: detecta bordas e aplica quantização de cores
# 1) Detecção de bordas
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 7)
edges = cv2.adaptiveThreshold(
blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2
)
# 2) Redução de cores
data = np.float32(image).reshape((-1, 3))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)
_, label, center = cv2.kmeans(
data, 8, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS
)
center = np.uint8(center)
quant = center[label.flatten()].reshape(image.shape)
# Combina bordas e quantização
cartoon = cv2.bitwise_and(quant, quant, mask=edges)
return cartoon
def color_quantization(self, image: np.ndarray, k: int = 8) -> np.ndarray:
# Reduz o número de cores via k-means
data = np.float32(image).reshape((-1, 3))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)
_, label, center = cv2.kmeans(
data, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS
)
center = np.uint8(center)
quant = center[label.flatten()].reshape(image.shape)
return quant
def equalize_histogram(self, image: np.ndarray) -> np.ndarray:
ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
channels = cv2.split(ycrcb)
cv2.equalizeHist(channels[0], channels[0])
merged = cv2.merge(channels)
return cv2.cvtColor(merged, cv2.COLOR_YCrCb2BGR)
def adaptive_threshold(self, image: np.ndarray) -> np.ndarray:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return cv2.cvtColor(
cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2
),
cv2.COLOR_GRAY2BGR,
)
def morphology(
self, image: np.ndarray, op: str = "erode", ksize: int = 5
) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (ksize, ksize))
ops = {
"erode": cv2.erode,
"dilate": cv2.dilate,
"open": cv2.morphologyEx,
"close": cv2.morphologyEx,
}
if op in ["open", "close"]:
flag = cv2.MORPH_OPEN if op == "open" else cv2.MORPH_CLOSE
return ops[op](image, flag, kernel)
return ops[op](image, kernel)
def sharpen(self, image: np.ndarray) -> np.ndarray:
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv2.filter2D(image, -1, kernel)
def hough_lines(self, image: np.ndarray) -> np.ndarray:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(
edges, 1, np.pi / 180, threshold=50, minLineLength=50, maxLineGap=10
)
if lines is not None:
for x1, y1, x2, y2 in lines[:, 0]:
cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
return image
def hough_circles(self, image: np.ndarray) -> np.ndarray:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
circles = cv2.HoughCircles(
gray,
cv2.HOUGH_GRADIENT,
dp=1.2,
minDist=50,
param1=50,
param2=30,
minRadius=5,
maxRadius=100,
)
if circles is not None:
circles = np.uint16(np.around(circles))
for x, y, r in circles[0, :]:
cv2.circle(image, (x, y), r, (0, 255, 0), 2)
return image
def optical_flow(
self, prev_gray: np.ndarray, curr_gray: np.ndarray, image: np.ndarray
) -> np.ndarray:
flow = cv2.calcOpticalFlowFarneback(
prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0
)
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
hsv = np.zeros_like(image)
hsv[..., 1] = 255
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|