Spaces:
Sleeping
Sleeping
django model try, no-accesss-token
Browse files- app.py +77 -5
- requirements.txt +5 -2
app.py
CHANGED
@@ -1,9 +1,81 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
return
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from unsloth import FastLanguageModel
|
6 |
+
from peft import PeftModel
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
+
class ModelManager:
|
10 |
+
_instance = None
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
self.model, self.tokenizer = self.load_model()
|
15 |
+
|
16 |
+
@classmethod
|
17 |
+
def get_instance(cls):
|
18 |
+
if cls._instance is None:
|
19 |
+
cls._instance = cls()
|
20 |
+
return cls._instance
|
21 |
+
|
22 |
+
def load_model(self):
|
23 |
+
# Load base model
|
24 |
+
backbone, tokenizer = FastLanguageModel.from_pretrained(
|
25 |
+
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
|
26 |
+
load_in_4bit=True,
|
27 |
+
dtype=torch.float16,
|
28 |
+
device_map=self.device,
|
29 |
+
)
|
30 |
+
|
31 |
+
# Load your fine-tuned adapter
|
32 |
+
try:
|
33 |
+
model = PeftModel.from_pretrained(
|
34 |
+
backbone,
|
35 |
+
"samith-a/Django-orm-code-gen",
|
36 |
+
torch_dtype=torch.float16,
|
37 |
+
device_map=self.device,
|
38 |
+
)
|
39 |
+
print("Adapter weights loaded successfully")
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error loading adapter: {e}")
|
42 |
+
model = backbone
|
43 |
+
|
44 |
+
FastLanguageModel.for_inference(model)
|
45 |
+
return model, tokenizer
|
46 |
+
|
47 |
+
def generate(self, instruction: str, input_text: str, max_new_tokens: int = 128) -> str:
|
48 |
+
alpaca_template = (
|
49 |
+
"### Instruction:\n{}\n\n"
|
50 |
+
"### Input:\n{}\n\n"
|
51 |
+
"### Response:\n"
|
52 |
+
)
|
53 |
+
prompt = alpaca_template.format(instruction, input_text)
|
54 |
+
|
55 |
+
encoded = self.tokenizer([prompt], return_tensors="pt").to(self.device)
|
56 |
+
outputs = self.model.generate(**encoded, max_new_tokens=max_new_tokens)
|
57 |
+
|
58 |
+
raw = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
+
return raw.split("### Response:")[-1].strip()
|
60 |
+
|
61 |
+
# Instantiate once
|
62 |
+
manager = ModelManager.get_instance()
|
63 |
|
64 |
+
def predict(instruction, context, max_tokens=128):
|
65 |
+
return manager.generate(instruction, context, max_new_tokens=int(max_tokens))
|
66 |
|
67 |
+
# Gradio UI / API
|
68 |
+
demo = gr.Interface(
|
69 |
+
fn=predict,
|
70 |
+
inputs=[
|
71 |
+
gr.Textbox(lines=2, label="Instruction", placeholder="Describe what you want…"),
|
72 |
+
gr.Textbox(lines=5, label="Input (code/context)", placeholder="Optional context…"),
|
73 |
+
gr.Slider(minimum=16, maximum=512, step=16, label="Max new tokens", value=128),
|
74 |
+
],
|
75 |
+
outputs=gr.Textbox(label="Generated Code"),
|
76 |
+
title="Django-ORM Code Generator",
|
77 |
+
description="Ask the LoRA-finetuned LLaMA3.2 model to generate or modify Django ORM code.",
|
78 |
+
)
|
79 |
|
80 |
+
if __name__ == "__main__":
|
81 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
unsloth
|
4 |
+
peft
|
5 |
+
gradio
|