Spaces:
Running
Running
""" | |
This file is modified from the HuggingFace transformers tutorial script for fine-tuning Donut on a custom dataset. | |
It's defined from `.ipynb` to the module implementation for better reusability and maintainability. | |
Reference: https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Donut/CORD/Fine_tune_Donut_on_a_custom_dataset_(CORD)_with_PyTorch_Lightning.ipynb | |
""" | |
import re | |
import random | |
from typing import Any, List, Tuple, Dict | |
import torch | |
import numpy as np | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from nltk import edit_distance | |
import pytorch_lightning as pl | |
from datasets import DatasetDict | |
from donut import JSONParseEvaluator | |
from huggingface_hub import upload_folder | |
from pillow_heif import register_heif_opener | |
from pytorch_lightning.callbacks import Callback | |
from pytorch_lightning.loggers import TensorBoardLogger | |
from torch.utils.data import ( | |
Dataset, | |
DataLoader | |
) | |
from transformers import ( | |
DonutProcessor, | |
VisionEncoderDecoderModel, | |
VisionEncoderDecoderConfig | |
) | |
TASK_PROMPT_NAME = "<s_menu-text-detection>" | |
register_heif_opener() | |
class DonutFinetuned: | |
def __init__(self, pretrained_model_repo_id: str = "ryanlinjui/donut-test"): | |
self.device = ( | |
"cuda" | |
if torch.cuda.is_available() | |
else "mps" if torch.backends.mps.is_available() else "cpu" | |
) | |
self.processor = DonutProcessor.from_pretrained(pretrained_model_repo_id) | |
self.model = VisionEncoderDecoderModel.from_pretrained(pretrained_model_repo_id) | |
self.model.eval() | |
self.model.to(self.device) | |
print(f"Using {self.device} device") | |
def predict(self, image: Image.Image) -> Dict[str, Any]: | |
# prepare encoder inputs | |
pixel_values = self.processor(image.convert("RGB"), return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(self.device) | |
# prepare decoder inputs | |
decoder_input_ids = self.processor.tokenizer(TASK_PROMPT_NAME, add_special_tokens=False, return_tensors="pt").input_ids | |
decoder_input_ids = decoder_input_ids.to(self.device) | |
# autoregressively generate sequence | |
outputs = self.model.generate( | |
pixel_values, | |
decoder_input_ids=decoder_input_ids, | |
max_length=self.model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=self.processor.tokenizer.pad_token_id, | |
eos_token_id=self.processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[self.processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True | |
) | |
# turn into JSON | |
seq = self.processor.batch_decode(outputs.sequences)[0] | |
seq = seq.replace(self.processor.tokenizer.eos_token, "").replace(self.processor.tokenizer.pad_token, "") | |
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token | |
seq = self.processor.token2json(seq) | |
return seq | |
def evaluate(self, dataset: Dataset, ground_truth_key: str = "ground_truth") -> Tuple[Dict[str, Any], List[Any]]: | |
output_list = [] | |
accs = [] | |
ted_accs = [] | |
f1_accs = [] | |
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)): | |
seq = self.predict(sample["image"]) | |
ground_truth = sample[ground_truth_key] | |
# Original JSON accuracy | |
evaluator = JSONParseEvaluator() | |
score = evaluator.cal_acc(seq, ground_truth) | |
accs.append(score) | |
output_list.append(seq) | |
# TED (Tree Edit Distance) Accuracy | |
# Convert predictions and ground truth to string format for comparison | |
pred_str = str(seq) if seq else "" | |
gt_str = str(ground_truth) if ground_truth else "" | |
# Calculate normalized edit distance (1 - normalized_edit_distance = accuracy) | |
if len(pred_str) == 0 and len(gt_str) == 0: | |
ted_acc = 1.0 | |
elif len(pred_str) == 0 or len(gt_str) == 0: | |
ted_acc = 0.0 | |
else: | |
edit_dist = edit_distance(pred_str, gt_str) | |
max_len = max(len(pred_str), len(gt_str)) | |
ted_acc = 1 - (edit_dist / max_len) | |
ted_accs.append(ted_acc) | |
# F1 Score Accuracy (character-level) | |
if len(pred_str) == 0 and len(gt_str) == 0: | |
f1_acc = 1.0 | |
elif len(pred_str) == 0 or len(gt_str) == 0: | |
f1_acc = 0.0 | |
else: | |
# Character-level precision and recall | |
pred_chars = set(pred_str) | |
gt_chars = set(gt_str) | |
if len(pred_chars) == 0: | |
precision = 0.0 | |
else: | |
precision = len(pred_chars.intersection(gt_chars)) / len(pred_chars) | |
if len(gt_chars) == 0: | |
recall = 0.0 | |
else: | |
recall = len(pred_chars.intersection(gt_chars)) / len(gt_chars) | |
if precision + recall == 0: | |
f1_acc = 0.0 | |
else: | |
f1_acc = 2 * (precision * recall) / (precision + recall) | |
f1_accs.append(f1_acc) | |
scores = { | |
"accuracies": accs, | |
"mean_accuracy": np.mean(accs), | |
"ted_accuracies": ted_accs, | |
"mean_ted_accuracy": np.mean(ted_accs), | |
"f1_accuracies": f1_accs, | |
"mean_f1_accuracy": np.mean(f1_accs), | |
"length": len(accs) | |
} | |
return scores, output_list | |
class DonutTrainer: | |
processor = None | |
max_length = 768 | |
image_size = [1280, 960] | |
added_tokens = [] | |
train_dataloader = None | |
val_dataloader = None | |
huggingface_model_id = None | |
class DonutDataset(Dataset): | |
""" | |
PyTorch Dataset for Donut. This class takes a HuggingFace Dataset as input. | |
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt), | |
and it will be converted into pixel_values (vectorized image) and labels (input_ids of the tokenized string). | |
Args: | |
dataset: HuggingFace DatasetDict containing the dataset to be used | |
max_length: the max number of tokens for the target sequences | |
split: whether to load "train", "validation" or "test" split | |
ignore_id: ignore_index for torch.nn.CrossEntropyLoss | |
task_start_token: the special token to be fed to the decoder to conduct the target task | |
prompt_end_token: the special token at the end of the sequences | |
sort_json_key: whether or not to sort the JSON keys | |
""" | |
def __init__( | |
self, | |
dataset: DatasetDict, | |
ground_truth_key: str, | |
max_length: int, | |
split: str = "train", | |
ignore_id: int = -100, | |
task_start_token: str = "<s>", | |
prompt_end_token: str = None, | |
sort_json_key: bool = True, | |
): | |
super().__init__() | |
self.dataset = dataset[split] | |
self.ground_truth_key = ground_truth_key | |
self.max_length = max_length | |
self.split = split | |
self.ignore_id = ignore_id | |
self.task_start_token = task_start_token | |
self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token | |
self.sort_json_key = sort_json_key | |
self.dataset_length = len(self.dataset) | |
self.gt_token_sequences = [] | |
for sample in self.dataset: | |
ground_truth = sample[self.ground_truth_key] | |
self.gt_token_sequences.append( | |
[ | |
self.json2token( | |
gt_json, | |
update_special_tokens_for_json_key=self.split == "train", | |
sort_json_key=self.sort_json_key, | |
) | |
+ DonutTrainer.processor.tokenizer.eos_token | |
for gt_json in [ground_truth] # load json from list of json | |
] | |
) | |
self.add_tokens([self.task_start_token, self.prompt_end_token]) | |
self.prompt_end_token_id = DonutTrainer.processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token) | |
def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): | |
""" | |
Convert an ordered JSON object into a token sequence | |
""" | |
if type(obj) == dict: | |
if len(obj) == 1 and "text_sequence" in obj: | |
return obj["text_sequence"] | |
else: | |
output = "" | |
if sort_json_key: | |
keys = sorted(obj.keys(), reverse=True) | |
else: | |
keys = obj.keys() | |
for k in keys: | |
if update_special_tokens_for_json_key: | |
self.add_tokens([fr"<s_{k}>", fr"</s_{k}>"]) | |
output += ( | |
fr"<s_{k}>" | |
+ self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) | |
+ fr"</s_{k}>" | |
) | |
return output | |
elif type(obj) == list: | |
return r"<sep/>".join( | |
[self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] | |
) | |
else: | |
obj = str(obj) | |
if f"<{obj}/>" in DonutTrainer.added_tokens: | |
obj = f"<{obj}/>" # for categorical special tokens | |
return obj | |
def add_tokens(self, list_of_tokens: List[str]): | |
""" | |
Add special tokens to tokenizer and resize the token embeddings of the decoder | |
""" | |
newly_added_num = DonutTrainer.processor.tokenizer.add_tokens(list_of_tokens) | |
if newly_added_num > 0: | |
DonutTrainer.model.decoder.resize_token_embeddings(len(DonutTrainer.processor.tokenizer)) | |
DonutTrainer.added_tokens.extend(list_of_tokens) | |
def __len__(self) -> int: | |
return self.dataset_length | |
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Load image from image_path of given dataset_path and convert into input_tensor and labels | |
Convert gt data into input_ids (tokenized string) | |
Returns: | |
input_tensor : preprocessed image | |
input_ids : tokenized gt_data | |
labels : masked labels (model doesn't need to predict prompt and pad token) | |
""" | |
sample = self.dataset[idx] | |
# inputs | |
pixel_values = DonutTrainer.processor(sample["image"], random_padding=self.split == "train", return_tensors="pt").pixel_values | |
pixel_values = pixel_values.squeeze() | |
# targets | |
target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1 | |
input_ids = DonutTrainer.processor.tokenizer( | |
target_sequence, | |
add_special_tokens=False, | |
max_length=self.max_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt", | |
)["input_ids"].squeeze(0) | |
labels = input_ids.clone() | |
labels[labels == DonutTrainer.processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token | |
# labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA) | |
return pixel_values, labels, target_sequence | |
class DonutModelPLModule(pl.LightningModule): | |
def __init__(self, config, processor, model): | |
super().__init__() | |
self.config = config | |
self.processor = processor | |
self.model = model | |
def training_step(self, batch, batch_idx): | |
pixel_values, labels, _ = batch | |
outputs = self.model(pixel_values, labels=labels) | |
loss = outputs.loss | |
self.log("train_loss", loss) | |
return loss | |
def validation_step(self, batch, batch_idx, dataset_idx=0): | |
pixel_values, labels, answers = batch | |
batch_size = pixel_values.shape[0] | |
# we feed the prompt to the model | |
decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device) | |
outputs = self.model.generate(pixel_values, | |
decoder_input_ids=decoder_input_ids, | |
max_length=DonutTrainer.max_length, | |
early_stopping=True, | |
pad_token_id=self.processor.tokenizer.pad_token_id, | |
eos_token_id=self.processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[self.processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True,) | |
predictions = [] | |
for seq in self.processor.tokenizer.batch_decode(outputs.sequences): | |
seq = seq.replace(self.processor.tokenizer.eos_token, "").replace(self.processor.tokenizer.pad_token, "") | |
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token | |
predictions.append(seq) | |
scores = [] | |
for pred, answer in zip(predictions, answers): | |
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred) | |
# NOT NEEDED ANYMORE | |
# answer = re.sub(r"<.*?>", "", answer, count=1) | |
answer = answer.replace(self.processor.tokenizer.eos_token, "") | |
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer))) | |
if self.config.get("verbose", False) and len(scores) == 1: | |
print(f"Prediction: {pred}") | |
print(f" Answer: {answer}") | |
print(f" Normed ED: {scores[0]}") | |
val_edit_distance = np.mean(scores) | |
self.log("val_edit_distance", val_edit_distance) | |
print(f"Validation Edit Distance: {val_edit_distance}") | |
return scores | |
def configure_optimizers(self): | |
# you could also add a learning rate scheduler if you want | |
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.get("lr")) | |
return optimizer | |
def train_dataloader(self): | |
return DonutTrainer.train_dataloader | |
def val_dataloader(self): | |
return DonutTrainer.val_dataloader | |
class PushToHubCallback(Callback): | |
def on_train_epoch_end(self, trainer, pl_module): | |
print(f"Pushing model to the hub, epoch {trainer.current_epoch}") | |
pl_module.model.push_to_hub(DonutTrainer.huggingface_model_id, commit_message=f"Training in progress, epoch {trainer.current_epoch}") | |
self._upload_logs(trainer.logger.log_dir, trainer.current_epoch) | |
def on_train_end(self, trainer, pl_module): | |
print(f"Pushing model to the hub after training") | |
pl_module.processor.push_to_hub(DonutTrainer.huggingface_model_id,commit_message=f"Training done") | |
pl_module.model.push_to_hub(DonutTrainer.huggingface_model_id, commit_message=f"Training done") | |
self._upload_logs(trainer.logger.log_dir, "final") | |
def _upload_logs(self, log_dir: str, epoch_info): | |
try: | |
print(f"Attempting to upload logs from: {log_dir}") | |
upload_folder(folder_path=log_dir, repo_id=DonutTrainer.huggingface_model_id, | |
path_in_repo="tensorboard_logs", | |
commit_message=f"Upload logs - epoch {epoch_info}", ignore_patterns=["*.tmp", "*.lock"]) | |
print(f"Successfully uploaded logs for epoch {epoch_info}") | |
except Exception as e: | |
print(f"Failed to upload logs: {e}") | |
pass | |
def train( | |
cls, | |
dataset: DatasetDict, | |
pretrained_model_repo_id: str, | |
huggingface_model_id: str, | |
epochs: int, | |
train_batch_size: int, | |
val_batch_size: int, | |
learning_rate: float, | |
val_check_interval: float, | |
check_val_every_n_epoch: int, | |
gradient_clip_val: float, | |
num_training_samples_per_epoch: int, | |
num_nodes: int, | |
warmup_steps: int, | |
ground_truth_key: str = "ground_truth" | |
): | |
cls.huggingface_model_id = huggingface_model_id | |
config = VisionEncoderDecoderConfig.from_pretrained(pretrained_model_repo_id) | |
config.encoder.image_size = cls.image_size | |
config.decoder.max_length = cls.max_length | |
cls.processor = DonutProcessor.from_pretrained(pretrained_model_repo_id) | |
cls.model = VisionEncoderDecoderModel.from_pretrained(pretrained_model_repo_id, config=config) | |
cls.processor.image_processor.size = cls.image_size[::-1] | |
cls.processor.image_processor.do_align_long_axis = False | |
train_dataset = cls.DonutDataset( | |
dataset=dataset, | |
ground_truth_key=ground_truth_key, | |
max_length=cls.max_length, | |
split="train", | |
task_start_token=TASK_PROMPT_NAME, | |
prompt_end_token=TASK_PROMPT_NAME, | |
sort_json_key=True | |
) | |
val_dataset = cls.DonutDataset( | |
dataset=dataset, | |
ground_truth_key=ground_truth_key, | |
max_length=cls.max_length, | |
split="validation", | |
task_start_token=TASK_PROMPT_NAME, | |
prompt_end_token=TASK_PROMPT_NAME, | |
sort_json_key=True | |
) | |
cls.model.config.pad_token_id = cls.processor.tokenizer.pad_token_id | |
cls.model.config.decoder_start_token_id = cls.processor.tokenizer.convert_tokens_to_ids([TASK_PROMPT_NAME])[0] | |
cls.train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4) | |
cls.val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4) | |
config = { | |
"max_epochs": epochs, | |
"val_check_interval": val_check_interval, # how many times we want to validate during an epoch | |
"check_val_every_n_epoch": check_val_every_n_epoch, | |
"gradient_clip_val": gradient_clip_val, | |
"num_training_samples_per_epoch": num_training_samples_per_epoch, | |
"lr": learning_rate, | |
"train_batch_sizes": [train_batch_size], | |
"val_batch_sizes": [val_batch_size], | |
# "seed":2022, | |
"num_nodes": num_nodes, | |
"warmup_steps": warmup_steps, # 10% | |
"result_path": "./.checkpoints", | |
"verbose": True, | |
} | |
model_module = cls.DonutModelPLModule(config, cls.processor, cls.model) | |
device = ( | |
"cuda" | |
if torch.cuda.is_available() | |
else "mps" if torch.backends.mps.is_available() else "cpu" | |
) | |
print(f"Using {device} device") | |
trainer = pl.Trainer( | |
accelerator="gpu" if device == "cuda" else "mps" if device == "mps" else "cpu", | |
devices=1 if device == "cuda" else 0, | |
max_epochs=config.get("max_epochs"), | |
val_check_interval=config.get("val_check_interval"), | |
check_val_every_n_epoch=config.get("check_val_every_n_epoch"), | |
gradient_clip_val=config.get("gradient_clip_val"), | |
precision=16 if device == "cuda" else 32, # we'll use mixed precision if device == "cuda" | |
num_sanity_val_steps=0, | |
logger=TensorBoardLogger(save_dir="./.checkpoints", name="donut_training", version=None), | |
callbacks=[cls.PushToHubCallback()] | |
) | |
trainer.fit(model_module) |