File size: 1,997 Bytes
6bd37dd
31371a9
 
 
 
6bd37dd
 
 
31371a9
 
 
 
 
 
6bd37dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31371a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
title: Menu Text Detection
emoji: 🐠
colorFrom: red
colorTo: red
sdk: gradio
python_version: 3.11
short_description: Extract structured menu information from images into JSON...
tags:
- donut
- fine-tuning
- image-to-text
- transformer
license: mit
---

# Menu Text Detection System

Extract structured menu information from images into JSON using a fine-tuned E2E model or LLM.  

[![Gradio Space Demo](https://img.shields.io/badge/GradioSpace-Demo-important?logo=huggingface)](https://huggingface.co/spaces/ryanlinjui/menu-text-detection)
[![Hugging Face Models & Datasets](https://img.shields.io/badge/HuggingFace-Models_&_Datasets-important?logo=huggingface)](https://huggingface.co/collections/ryanlinjui/menu-text-detection-670ccf527626bb004bbfb39b)

https://github.com/user-attachments/assets/80e5d54c-f2c8-4593-ad9b-499e5b71d8f6

## πŸš€ Features
### Overview
Currently supports the following information from menu images:

- **Restaurant Name**  
- **Business Hours**  
- **Address**  
- **Phone Number**
- **Dish Information**
  - Name  
  - Price  

> For the JSON schema, see [tools directory](./tools).

### Supported Methods to Extract Menu Information
#### Fine-tuned E2E model and Training metrics
- [**Donut (Document Parsing Task)**](https://huggingface.co/ryanlinjui/donut-base-finetuned-menu) - Base model by [Clova AI (ECCV ’22)](https://github.com/clovaai/donut)

#### LLM Function Calling
- Google Gemini API
- OpenAI GPT API

## πŸ’» Training / Fine-Tuning
### Setup
Use [uv](https://github.com/astral-sh/uv) to set up the development environment:

```bash
uv sync
```

> or use `pip install -r requirements.txt` if it has any problems

### Training Script (Datasets collecting, Fine-Tuning)
Please refer [`train.ipynb`](./train.ipynb). Use Jupyter Notebook for training:

```bash
uv run jupyter-notebook
```

> For VSCode users, please install Jupyter extension, then select `.venv/bin/python` as your kernel.

### Run Demo Locally
```bash
uv run python app.py
```