File size: 17,176 Bytes
58eae37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from setfit import AbsaModel
import logging
from typing import List, Dict, Any
import uvicorn
import os

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(title="ABSA Web Application", description="Aspect-Based Sentiment Analysis using SetFit models")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global variable to store the model
absa_model = None

class TextInput(BaseModel):
    text: str

class ABSAResponse(BaseModel):
    text: str
    predictions: List[Dict[str, Any]]
    success: bool
    message: str

async def load_model():
    """Load the ABSA model on startup"""
    global absa_model
    try:
        logger.info("Loading ABSA models...")
        absa_model = AbsaModel.from_pretrained(
            "ronalhung/setfit-absa-restaurants-aspect",
            "ronalhung/setfit-absa-restaurants-polarity",
        )
        logger.info("Models loaded successfully!")
    except Exception as e:
        logger.error(f"Failed to load models: {str(e)}")
        raise e

@app.on_event("startup")
async def startup_event():
    """Load model when the application starts"""
    await load_model()

@app.get("/", response_class=HTMLResponse)
async def get_home():
    """Serve the main HTML page"""
    html_content = """
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>ABSA - Aspect-Based Sentiment Analysis</title>
        <script src="https://cdn.tailwindcss.com"></script>
        <script src="https://unpkg.com/react@18/umd/react.development.js"></script>
        <script src="https://unpkg.com/react-dom@18/umd/react-dom.development.js"></script>
        <script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>
    </head>
    <body class="bg-gray-50">
        <div id="root"></div>
        <script type="text/babel">
            const { useState, useRef } = React;
            
            const App = () => {
                const [text, setText] = useState('');
                const [results, setResults] = useState(null);
                const [loading, setLoading] = useState(false);
                const [error, setError] = useState('');
                const fileInputRef = useRef(null);
                
                const handleAnalyze = async () => {
                    if (!text.trim()) {
                        setError('Please enter some text to analyze');
                        return;
                    }
                    
                    setLoading(true);
                    setError('');
                    
                    try {
                        const response = await fetch('/analyze', {
                            method: 'POST',
                            headers: {
                                'Content-Type': 'application/json',
                            },
                            body: JSON.stringify({ text: text.trim() }),
                        });
                        
                        const data = await response.json();
                        
                        if (data.success) {
                            setResults(data);
                        } else {
                            setError(data.message || 'Analysis failed');
                        }
                    } catch (err) {
                        setError('Failed to analyze text. Please try again.');
                        console.error('Error:', err);
                    } finally {
                        setLoading(false);
                    }
                };
                
                const handleFileUpload = async (event) => {
                    const file = event.target.files[0];
                    if (!file) return;
                    
                    if (!file.name.endsWith('.txt')) {
                        setError('Please upload a .txt file');
                        return;
                    }
                    
                    try {
                        const text = await file.text();
                        setText(text);
                        setError('');
                    } catch (err) {
                        setError('Failed to read file. Please try again.');
                        console.error('Error reading file:', err);
                    }
                };
                
                const clearResults = () => {
                    setText('');
                    setResults(null);
                    setError('');
                };
                
                const getSentimentColor = (polarity) => {
                    switch (polarity) {
                        case 'positive': return 'text-green-600 bg-green-100';
                        case 'negative': return 'text-red-600 bg-red-100';
                        case 'neutral': return 'text-gray-600 bg-gray-100';
                        case 'conflict': return 'text-yellow-600 bg-yellow-100';
                        default: return 'text-gray-600 bg-gray-100';
                    }
                };
                
                return (
                    <div className="min-h-screen bg-gradient-to-br from-blue-50 to-indigo-100">
                        <div className="container mx-auto px-4 py-8">
                            <div className="max-w-4xl mx-auto">
                                {/* Header */}
                                <div className="text-center mb-8">
                                    <h1 className="text-4xl font-bold text-gray-800 mb-4">
                                        Aspect-Based Sentiment Analysis
                                    </h1>
                                    <p className="text-lg text-gray-600">
                                        Analyze aspects and sentiments in restaurant reviews using SetFit models
                                    </p>
                                </div>
                                
                                {/* Input Section */}
                                <div className="bg-white rounded-lg shadow-lg p-6 mb-6">
                                    <h2 className="text-2xl font-semibold text-gray-800 mb-4">Input Text</h2>
                                    
                                    {/* File Upload */}
                                    <div className="mb-4">
                                        <label className="block text-sm font-medium text-gray-700 mb-2">
                                            Upload Text File (.txt)
                                        </label>
                                        <input
                                            ref={fileInputRef}
                                            type="file"
                                            accept=".txt"
                                            onChange={handleFileUpload}
                                            className="block w-full text-sm text-gray-500
                                                file:mr-4 file:py-2 file:px-4
                                                file:rounded-md file:border-0
                                                file:text-sm file:font-semibold
                                                file:bg-blue-50 file:text-blue-700
                                                hover:file:bg-blue-100
                                                cursor-pointer"
                                        />
                                    </div>
                                    
                                    {/* Text Area */}
                                    <div className="mb-4">
                                        <label className="block text-sm font-medium text-gray-700 mb-2">
                                            Or type/paste your text here:
                                        </label>
                                        <textarea
                                            value={text}
                                            onChange={(e) => setText(e.target.value)}
                                            placeholder="Enter restaurant review text for analysis..."
                                            className="w-full h-32 p-3 border border-gray-300 rounded-md focus:ring-2 focus:ring-blue-500 focus:border-blue-500 resize-none"
                                        />
                                    </div>
                                    
                                    {/* Error Message */}
                                    {error && (
                                        <div className="mb-4 p-3 bg-red-100 border border-red-400 text-red-700 rounded-md">
                                            {error}
                                        </div>
                                    )}
                                    
                                    {/* Action Buttons */}
                                    <div className="flex gap-3">
                                        <button
                                            onClick={handleAnalyze}
                                            disabled={loading || !text.trim()}
                                            className="px-6 py-2 bg-blue-600 text-white rounded-md hover:bg-blue-700 
                                                disabled:bg-gray-400 disabled:cursor-not-allowed
                                                flex items-center gap-2 font-medium transition-colors"
                                        >
                                            {loading ? (
                                                <>
                                                    <div className="animate-spin rounded-full h-4 w-4 border-b-2 border-white"></div>
                                                    Analyzing...
                                                </>
                                            ) : (
                                                'Analyze Text'
                                            )}
                                        </button>
                                        
                                        <button
                                            onClick={clearResults}
                                            className="px-6 py-2 bg-gray-500 text-white rounded-md hover:bg-gray-600 
                                                font-medium transition-colors"
                                        >
                                            Clear
                                        </button>
                                    </div>
                                </div>
                                
                                {/* Results Section */}
                                {results && (
                                    <div className="bg-white rounded-lg shadow-lg p-6">
                                        <h2 className="text-2xl font-semibold text-gray-800 mb-4">Analysis Results</h2>
                                        
                                        {/* Original Text */}
                                        <div className="mb-6">
                                            <h3 className="text-lg font-medium text-gray-700 mb-2">Original Text:</h3>
                                            <div className="p-3 bg-gray-50 rounded-md border">
                                                {results.text}
                                            </div>
                                        </div>
                                        
                                        {/* Predictions */}
                                        <div>
                                            <h3 className="text-lg font-medium text-gray-700 mb-4">
                                                Detected Aspects & Sentiments:
                                            </h3>
                                            
                                            {results.predictions && results.predictions.length > 0 ? (
                                                <div className="space-y-3">
                                                    {results.predictions.map((prediction, index) => (
                                                        <div key={index} className="border border-gray-200 rounded-md p-4">
                                                            <div className="flex items-center justify-between mb-2">
                                                                <span className="text-sm font-medium text-gray-600">
                                                                    Aspect Span:
                                                                </span>
                                                                <span className="font-semibold text-gray-800">
                                                                    "{prediction.span}"
                                                                </span>
                                                            </div>
                                                            <div className="flex items-center justify-between">
                                                                <span className="text-sm font-medium text-gray-600">
                                                                    Sentiment:
                                                                </span>
                                                                <span className={`px-3 py-1 rounded-full text-sm font-medium ${getSentimentColor(prediction.polarity)}`}>
                                                                    {prediction.polarity}
                                                                </span>
                                                            </div>
                                                        </div>
                                                    ))}
                                                </div>
                                            ) : (
                                                <div className="text-gray-500 text-center py-4">
                                                    No aspects detected in the text.
                                                </div>
                                            )}
                                        </div>
                                    </div>
                                )}
                            </div>
                        </div>
                    </div>
                );
            };
            
            ReactDOM.render(<App />, document.getElementById('root'));
        </script>
    </body>
    </html>
    """
    return html_content

@app.post("/analyze", response_model=ABSAResponse)
async def analyze_text(input_data: TextInput):
    """Analyze text for aspects and sentiment"""
    global absa_model
    
    if absa_model is None:
        raise HTTPException(status_code=503, detail="Model not loaded yet. Please try again later.")
    
    try:
        text = input_data.text.strip()
        if not text:
            return ABSAResponse(
                text=text,
                predictions=[],
                success=False,
                message="Empty text provided"
            )
        
        logger.info(f"Analyzing text: {text[:100]}...")
        
        # Run ABSA analysis
        predictions = absa_model(text)
        
        # Format predictions for response
        formatted_predictions = []
        if predictions:
            for pred in predictions:
                formatted_predictions.append({
                    "span": pred.get("span", ""),
                    "polarity": pred.get("polarity", "neutral")
                })
        
        return ABSAResponse(
            text=text,
            predictions=formatted_predictions,
            success=True,
            message="Analysis completed successfully"
        )
        
    except Exception as e:
        logger.error(f"Error during analysis: {str(e)}")
        return ABSAResponse(
            text=input_data.text,
            predictions=[],
            success=False,
            message=f"Analysis failed: {str(e)}"
        )

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {
        "status": "healthy",
        "model_loaded": absa_model is not None,
        "message": "ABSA service is running"
    }

if __name__ == "__main__":
    uvicorn.run(
        "app:app",
        host="0.0.0.0",
        port=8000,
        reload=True,
        log_level="info"
    )