Spaces:
Running
Running
File size: 2,687 Bytes
2371c3d 58eae37 2371c3d 58eae37 2371c3d 58eae37 2371c3d 58eae37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
title: ABSA Restaurant Reviews (FastAPI)
emoji: 🍽️
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
pinned: false
license: mit
models:
- ronalhung/setfit-absa-restaurants-aspect
- ronalhung/setfit-absa-restaurants-polarity
tags:
- sentiment-analysis
- aspect-based-sentiment-analysis
- setfit
- restaurant-reviews
- nlp
- fastapi
- react
---
# 🍽️ Aspect-Based Sentiment Analysis for Restaurant Reviews (FastAPI + React)
This application performs **Aspect-Based Sentiment Analysis (ABSA)** on restaurant reviews using SetFit models from Hugging Face.
**Original FastAPI + React interface** preserved with beautiful modern UI.
## Features
- 📝 **Text Input**: Enter restaurant reviews directly
- 📁 **File Upload**: Upload .txt files containing reviews
- 🎯 **Aspect Extraction**: Automatically detect aspects (food, service, atmosphere, etc.)
- 💭 **Sentiment Analysis**: Classify sentiment for each aspect (positive, negative, neutral, conflict)
- 🎨 **Modern UI**: Beautiful React interface with TailwindCSS
- ⚡ **Fast API**: High-performance backend with FastAPI
## Models Used
1. **[ronalhung/setfit-absa-restaurants-aspect](https://huggingface.co/ronalhung/setfit-absa-restaurants-aspect)** - Aspect extraction (86.1% accuracy)
2. **[ronalhung/setfit-absa-restaurants-polarity](https://huggingface.co/ronalhung/setfit-absa-restaurants-polarity)** - Sentiment classification (69.6% accuracy)
## How to Use
1. **Text Input**: Type or paste a restaurant review in the text area
2. **File Upload**: Click "Upload Text File" to load a .txt file
3. **Analyze**: Click "Analyze Text" to get results
4. **Results**: View detected aspects and their sentiments with color-coded labels
## Example
**Input:** "The food was excellent but the service was terrible."
**Output:**
- Aspect: "food" → Sentiment: positive (green)
- Aspect: "service" → Sentiment: negative (red)
## API Endpoints
- `GET /` - Web interface
- `POST /analyze` - Analyze text (JSON API)
- `GET /health` - Health check
## Technology Stack
- **Backend**: FastAPI + SetFit models
- **Frontend**: React + TailwindCSS (inline)
- **Models**: SetFit with sentence-transformers/all-MiniLM-L6-v2
- **Deployment**: Docker on Hugging Face Spaces
## Citation
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
}
``` |