Spaces:
Sleeping
Sleeping
| import uvicorn | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from sentence_transformers import SentenceTransformer | |
| from pinecone import Pinecone, ServerlessSpec | |
| import uuid | |
| import os | |
| from contextlib import asynccontextmanager | |
| # --- Environment Setup --- | |
| PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") | |
| PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "memoria-index") | |
| CACHE_DIR = "/app/model_cache" # For Hugging Face caching | |
| # --- Global Objects --- | |
| model = None | |
| pc = None | |
| index = None | |
| async def lifespan(app: FastAPI): | |
| global model, pc, index | |
| print("Application startup...") | |
| if not PINECONE_API_KEY: | |
| raise ValueError("PINECONE_API_KEY environment variable not set.") | |
| # 1. Load the official, industry-standard lightweight model. | |
| print("Loading sentence-transformers/all-MiniLM-L6-v2 model...") | |
| model = SentenceTransformer( | |
| 'sentence-transformers/all-MiniLM-L6-v2', | |
| cache_folder=CACHE_DIR | |
| ) | |
| print("Model loaded.") | |
| # 2. Connect to Pinecone | |
| print("Connecting to Pinecone...") | |
| pc = Pinecone(api_key=PINECONE_API_KEY) | |
| # 3. Get or create the Pinecone index with the correct dimension. | |
| model_dimension = model.get_sentence_embedding_dimension() | |
| print(f"Model dimension is: {model_dimension}") | |
| if PINECONE_INDEX_NAME not in pc.list_indexes().names(): | |
| print(f"Creating new Pinecone index: {PINECONE_INDEX_NAME} with dimension {model_dimension}") | |
| pc.create_index( | |
| name=PINECONE_INDEX_NAME, | |
| dimension=model_dimension, | |
| metric="cosine", | |
| spec=ServerlessSpec(cloud="aws", region="us-east-1") | |
| ) | |
| index = pc.Index(PINECONE_INDEX_NAME) | |
| print("Pinecone setup complete.") | |
| yield | |
| print("Application shutdown.") | |
| # --- Pydantic Models & FastAPI App --- | |
| class Memory(BaseModel): | |
| content: str | |
| class SearchQuery(BaseModel): | |
| query: str | |
| app = FastAPI( | |
| title="Memoria API", | |
| version="1.1.0", | |
| lifespan=lifespan | |
| ) | |
| app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]) | |
| # --- API Endpoints --- | |
| def read_root(): | |
| return {"status": "ok", "message": "Welcome to the Memoria API!"} | |
| def save_memory_endpoint(memory: Memory): | |
| embedding = model.encode(memory.content).tolist() | |
| memory_id = str(uuid.uuid4()) | |
| index.upsert(vectors=[{"id": memory_id, "values": embedding, "metadata": {"text": memory.content}}]) | |
| print(f"Saved memory: {memory_id}") | |
| return {"status": "success", "id": memory_id} | |
| def search_memory_endpoint(search: SearchQuery): | |
| query_embedding = model.encode(search.query).tolist() | |
| results = index.query(vector=query_embedding, top_k=5, include_metadata=True) | |
| retrieved_documents = [match['metadata']['text'] for match in results['matches']] | |
| print(f"Found {len(retrieved_documents)} results for query: '{search.query}'") | |
| return {"status": "success", "results": retrieved_documents} | |
| if __name__ == "__main__": | |
| uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True) |