Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
#Acknowledgments:
|
2 |
-
#This project is inspired by:
|
3 |
-
#1. https://github.com/haltakov/natural-language-image-search by Vladimir Haltakov
|
4 |
-
#2. OpenAI's CLIP
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
#Importing all the necessary libraries
|
9 |
import torch
|
10 |
import requests
|
@@ -18,8 +11,6 @@ from PIL import Image as PILIMAGE
|
|
18 |
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer, CLIPConfig
|
19 |
from sentence_transformers import SentenceTransformer, util
|
20 |
|
21 |
-
|
22 |
-
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
# Define model
|
@@ -35,7 +26,6 @@ photo_ids = pd.read_csv("./photo_ids.csv")
|
|
35 |
photo_ids = list(photo_ids['photo_id'])
|
36 |
|
37 |
|
38 |
-
|
39 |
def encode_text(text):
|
40 |
with torch.no_grad():
|
41 |
# Encode and normalize the description using CLIP
|
@@ -44,6 +34,7 @@ def encode_text(text):
|
|
44 |
text_encoded = model.get_text_features(**inputs).detach().numpy()
|
45 |
return text_encoded
|
46 |
|
|
|
47 |
def encode_image(image):
|
48 |
image = PILIMAGE.fromarray(image.astype('uint8'), 'RGB')
|
49 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
#Importing all the necessary libraries
|
2 |
import torch
|
3 |
import requests
|
|
|
11 |
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer, CLIPConfig
|
12 |
from sentence_transformers import SentenceTransformer, util
|
13 |
|
|
|
|
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
# Define model
|
|
|
26 |
photo_ids = list(photo_ids['photo_id'])
|
27 |
|
28 |
|
|
|
29 |
def encode_text(text):
|
30 |
with torch.no_grad():
|
31 |
# Encode and normalize the description using CLIP
|
|
|
34 |
text_encoded = model.get_text_features(**inputs).detach().numpy()
|
35 |
return text_encoded
|
36 |
|
37 |
+
|
38 |
def encode_image(image):
|
39 |
image = PILIMAGE.fromarray(image.astype('uint8'), 'RGB')
|
40 |
with torch.no_grad():
|