Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,39 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
-
AutoConfig,
|
5 |
-
AutoTokenizer,
|
6 |
-
AutoModelForCausalLM
|
7 |
-
)
|
8 |
|
9 |
-
|
10 |
|
11 |
-
# 1
|
12 |
config = AutoConfig.from_pretrained(
|
13 |
"MeiGen-AI/MeiGen-MultiTalk",
|
14 |
-
trust_remote_code=True,
|
15 |
-
|
16 |
)
|
17 |
|
18 |
-
# 2
|
19 |
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
"MeiGen-AI/MeiGen-MultiTalk",
|
21 |
-
trust_remote_code=True,
|
22 |
-
|
23 |
)
|
24 |
|
25 |
-
# 3
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
"MeiGen-AI/MeiGen-MultiTalk",
|
28 |
config=config,
|
29 |
-
trust_remote_code=True,
|
30 |
-
|
31 |
)
|
32 |
|
33 |
-
def generate(text
|
34 |
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
35 |
-
|
36 |
-
return tokenizer.decode(
|
37 |
|
38 |
iface = gr.Interface(
|
39 |
fn=generate,
|
40 |
-
inputs=
|
41 |
outputs="text",
|
42 |
-
title="MeiGen-MultiTalk Demo"
|
43 |
)
|
44 |
iface.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
HF_TOKEN = os.environ["HF_HUB_TOKEN"]
|
6 |
|
7 |
+
# 1. Загружаем конфиг с доверительным исполнением кода
|
8 |
config = AutoConfig.from_pretrained(
|
9 |
"MeiGen-AI/MeiGen-MultiTalk",
|
10 |
+
trust_remote_code=True, # 🚩 вот здесь
|
11 |
+
token=HF_TOKEN
|
12 |
)
|
13 |
|
14 |
+
# 2. Токенизатор
|
15 |
tokenizer = AutoTokenizer.from_pretrained(
|
16 |
"MeiGen-AI/MeiGen-MultiTalk",
|
17 |
+
trust_remote_code=True, # и здесь
|
18 |
+
token=HF_TOKEN
|
19 |
)
|
20 |
|
21 |
+
# 3. Модель
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
"MeiGen-AI/MeiGen-MultiTalk",
|
24 |
config=config,
|
25 |
+
trust_remote_code=True, # и здесь
|
26 |
+
token=HF_TOKEN
|
27 |
)
|
28 |
|
29 |
+
def generate(text):
|
30 |
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
31 |
+
out = model.generate(**inputs, max_new_tokens=100)
|
32 |
+
return tokenizer.decode(out[0], skip_special_tokens=True)
|
33 |
|
34 |
iface = gr.Interface(
|
35 |
fn=generate,
|
36 |
+
inputs="text",
|
37 |
outputs="text",
|
|
|
38 |
)
|
39 |
iface.launch()
|