import gradio as gr from huggingface_hub import InferenceClient # ←–– set this to the exact name of your HF repo HF_MODEL_ID = "rieon/DeepCoder-14B-Preview-Suger" # explicitly tell the client you want text-generation client = InferenceClient(repo_id=HF_MODEL_ID, task="text-generation") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # assemble a single prompt from system message + history prompt = system_message.strip() + "\n" for user, bot in history: prompt += f"User: {user}\nAssistant: {bot}\n" prompt += f"User: {message}\nAssistant:" # stream back tokens generated = "" for chunk in client.text_generation( inputs=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): # the API returns a small JSON with .generated_text generated += chunk.generated_text yield generated demo = gr.ChatInterface( fn=respond, system_prompt="You are a helpful coding assistant.", additional_inputs=[ gr.Textbox(value="You are a helpful coding assistant.", label="System message"), gr.Slider(1, 2048, value=512, step=1, label="Max new tokens"), gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"), ], title="DeepCoder-14B (LoRA Fine-Tuned)", ) if __name__ == "__main__": demo.launch()