Spaces:
Sleeping
Sleeping
fix
Browse files
app.py
CHANGED
@@ -1,11 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
# βββ set this to the exact name of your HF repo
|
5 |
HF_MODEL_ID = "rieon/DeepCoder-14B-Preview-Suger"
|
6 |
|
7 |
# explicitly tell the client you want text-generation
|
8 |
-
client = InferenceClient(model=HF_MODEL_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# def respond(
|
11 |
# message: str,
|
@@ -53,17 +64,32 @@ def respond(
|
|
53 |
prompt += f"User: {message}\nAssistant:"
|
54 |
|
55 |
# stream back tokens
|
56 |
-
generated = ""
|
57 |
-
for chunk in client.text_generation(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
):
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
demo = gr.ChatInterface(
|
69 |
fn=respond,
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
import torch
|
5 |
|
6 |
# βββ set this to the exact name of your HF repo
|
7 |
HF_MODEL_ID = "rieon/DeepCoder-14B-Preview-Suger"
|
8 |
|
9 |
# explicitly tell the client you want text-generation
|
10 |
+
# client = InferenceClient(model=HF_MODEL_ID)
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, use_fast=True)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
HF_MODEL_ID,
|
16 |
+
device_map="auto", # spreads across all available GPUs
|
17 |
+
torch_dtype=torch.float16
|
18 |
+
)
|
19 |
+
model.eval()
|
20 |
|
21 |
# def respond(
|
22 |
# message: str,
|
|
|
64 |
prompt += f"User: {message}\nAssistant:"
|
65 |
|
66 |
# stream back tokens
|
67 |
+
# generated = ""
|
68 |
+
# for chunk in client.text_generation(
|
69 |
+
# prompt,
|
70 |
+
# max_new_tokens=max_tokens,
|
71 |
+
# temperature=temperature,
|
72 |
+
# top_p=top_p,
|
73 |
+
# stream=True,
|
74 |
+
# ):
|
75 |
+
# # the API returns a small JSON with .generated_text
|
76 |
+
# generated += chunk.generated_text
|
77 |
+
# yield generated
|
78 |
+
streamer = TextIteratorStreamer(tokenizer,
|
79 |
+
skip_prompt=True,
|
80 |
+
skip_special_tokens=True)
|
81 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
82 |
+
model.generate(**inputs,
|
83 |
+
streamer=streamer,
|
84 |
+
max_new_tokens=max_new_tokens,
|
85 |
+
temperature=temperature,
|
86 |
+
top_p=top_p)
|
87 |
+
|
88 |
+
output = ""
|
89 |
+
for tok in streamer:
|
90 |
+
output += tok
|
91 |
+
yield output
|
92 |
+
|
93 |
|
94 |
demo = gr.ChatInterface(
|
95 |
fn=respond,
|