Spaces:
Sleeping
Sleeping
text-generation
Browse files
app.py
CHANGED
@@ -1,64 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("rieon/DeepCoder-14B-Preview-Suger")
|
8 |
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
-
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
|
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
|
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a
|
50 |
-
gr.Slider(
|
51 |
-
gr.Slider(
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# ←–– set this to the exact name of your HF repo
|
5 |
+
HF_MODEL_ID = "rieon/DeepCoder-14B-Preview-Suger"
|
|
|
|
|
6 |
|
7 |
+
# explicitly tell the client you want text-generation
|
8 |
+
client = InferenceClient(repo_id=HF_MODEL_ID, task="text-generation")
|
9 |
|
10 |
def respond(
|
11 |
+
message: str,
|
12 |
history: list[tuple[str, str]],
|
13 |
+
system_message: str,
|
14 |
+
max_tokens: int,
|
15 |
+
temperature: float,
|
16 |
+
top_p: float,
|
17 |
):
|
18 |
+
# assemble a single prompt from system message + history
|
19 |
+
prompt = system_message.strip() + "\n"
|
20 |
+
for user, bot in history:
|
21 |
+
prompt += f"User: {user}\nAssistant: {bot}\n"
|
22 |
+
prompt += f"User: {message}\nAssistant:"
|
23 |
+
|
24 |
+
# stream back tokens
|
25 |
+
generated = ""
|
26 |
+
for chunk in client.text_generation(
|
27 |
+
inputs=prompt,
|
28 |
+
max_new_tokens=max_tokens,
|
|
|
|
|
|
|
|
|
|
|
29 |
temperature=temperature,
|
30 |
top_p=top_p,
|
31 |
+
stream=True,
|
32 |
):
|
33 |
+
# the API returns a small JSON with .generated_text
|
34 |
+
generated += chunk.generated_text
|
35 |
+
yield generated
|
|
|
36 |
|
|
|
|
|
|
|
|
|
37 |
demo = gr.ChatInterface(
|
38 |
+
fn=respond,
|
39 |
+
system_prompt="You are a helpful coding assistant.",
|
40 |
additional_inputs=[
|
41 |
+
gr.Textbox(value="You are a helpful coding assistant.", label="System message"),
|
42 |
+
gr.Slider(1, 2048, value=512, step=1, label="Max new tokens"),
|
43 |
+
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
44 |
+
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
],
|
46 |
+
title="DeepCoder-14B (LoRA Fine-Tuned)",
|
47 |
)
|
48 |
|
|
|
49 |
if __name__ == "__main__":
|
50 |
demo.launch()
|