Upload 2 files
Browse files- app.py +213 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import LlavaForConditionalGeneration, AutoProcessor
|
5 |
+
import logging
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
from datetime import datetime
|
9 |
+
import uuid
|
10 |
+
import spacy
|
11 |
+
from spacy.cli import download
|
12 |
+
import zipfile
|
13 |
+
import shutil
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Define paths
|
20 |
+
OUTPUT_JSON_PATH = "captions.json"
|
21 |
+
UPLOAD_DIR = "uploads"
|
22 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
23 |
+
|
24 |
+
# Load SpaCy model for keyword extraction
|
25 |
+
try:
|
26 |
+
try:
|
27 |
+
nlp = spacy.load("en_core_web_sm")
|
28 |
+
except OSError:
|
29 |
+
logger.info("Downloading en_core_web_sm model...")
|
30 |
+
download("en_core_web_sm")
|
31 |
+
nlp = spacy.load("en_core_web_sm")
|
32 |
+
except Exception as e:
|
33 |
+
logger.error(f"Error loading SpaCy model: {str(e)}")
|
34 |
+
raise
|
35 |
+
|
36 |
+
# Load LLAVA model and processor
|
37 |
+
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
|
38 |
+
try:
|
39 |
+
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
40 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
41 |
+
MODEL_PATH,
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
low_cpu_mem_usage=True,
|
44 |
+
device_map="auto"
|
45 |
+
)
|
46 |
+
model.eval()
|
47 |
+
logger.info("Model and processor loaded successfully.")
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Error loading model: {str(e)}")
|
50 |
+
raise
|
51 |
+
|
52 |
+
# Function to extract keywords
|
53 |
+
def extract_keywords(text):
|
54 |
+
try:
|
55 |
+
doc = nlp(text)
|
56 |
+
keywords = [token.text.lower() for token in doc if token.pos_ in ["NOUN", "ADJ"] and not token.is_stop]
|
57 |
+
return list(set(keywords))[:5]
|
58 |
+
except Exception as e:
|
59 |
+
logger.error(f"Error extracting keywords: {str(e)}")
|
60 |
+
return []
|
61 |
+
|
62 |
+
# Function to save metadata to JSON
|
63 |
+
def save_to_json(image_name, caption, caption_type, custom_prompt, keywords, error=None):
|
64 |
+
result = {
|
65 |
+
"image_name": image_name,
|
66 |
+
"caption": caption,
|
67 |
+
"caption_type": caption_type,
|
68 |
+
"custom_prompt": custom_prompt,
|
69 |
+
"keywords": keywords,
|
70 |
+
"timestamp": datetime.now().isoformat(),
|
71 |
+
"error": error
|
72 |
+
}
|
73 |
+
try:
|
74 |
+
if os.path.exists(OUTPUT_JSON_PATH):
|
75 |
+
with open(OUTPUT_JSON_PATH, "r") as f:
|
76 |
+
data = json.load(f)
|
77 |
+
else:
|
78 |
+
data = []
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Error reading JSON file: {str(e)}")
|
81 |
+
data = []
|
82 |
+
|
83 |
+
data.append(result)
|
84 |
+
try:
|
85 |
+
with open(OUTPUT_JSON_PATH, "w") as f:
|
86 |
+
json.dump(data, f, indent=4)
|
87 |
+
logger.info(f"Saved result to {OUTPUT_JSON_PATH}")
|
88 |
+
except Exception as e:
|
89 |
+
logger.error(f"Error writing to JSON file: {str(e)}")
|
90 |
+
|
91 |
+
# Function to process single image
|
92 |
+
def process_single_image(image, caption_type, custom_prompt):
|
93 |
+
if image is None:
|
94 |
+
error_msg = "Please upload an image."
|
95 |
+
save_to_json("unknown", error_msg, caption_type, custom_prompt, [], error=error_msg)
|
96 |
+
return error_msg
|
97 |
+
|
98 |
+
image_name = os.path.join(UPLOAD_DIR, f"image_{uuid.uuid4().hex}.jpg")
|
99 |
+
image.save(image_name)
|
100 |
+
|
101 |
+
try:
|
102 |
+
image = image.resize((256, 256))
|
103 |
+
prompt = custom_prompt.strip() if custom_prompt.strip() else f"Write a {caption_type} caption for this image."
|
104 |
+
convo = [
|
105 |
+
{"role": "system", "content": "You are a helpful assistant that generates accurate and relevant image captions."},
|
106 |
+
{"role": "user", "content": prompt.strip()}
|
107 |
+
]
|
108 |
+
|
109 |
+
inputs = processor(images=image, text=convo[1]["content"], return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
110 |
+
|
111 |
+
with torch.no_grad():
|
112 |
+
output = model.generate(**inputs, max_new_tokens=50, temperature=0.7, top_p=0.9)
|
113 |
+
|
114 |
+
caption = processor.decode(output[0], skip_special_tokens=True).strip()
|
115 |
+
keywords = extract_keywords(caption)
|
116 |
+
|
117 |
+
save_to_json(image_name, caption, caption_type, custom_prompt, keywords, error=None)
|
118 |
+
return f"Caption: {caption}\nKeywords: {', '.join(keywords)}"
|
119 |
+
except Exception as e:
|
120 |
+
error_msg = f"Error generating caption: {str(e)}"
|
121 |
+
logger.error(error_msg)
|
122 |
+
save_to_json(image_name, "", caption_type, custom_prompt, [], error=error_msg)
|
123 |
+
return error_msg
|
124 |
+
|
125 |
+
# Function to process batch images
|
126 |
+
def process_batch_images(zip_file, caption_type, custom_prompt):
|
127 |
+
if zip_file is None:
|
128 |
+
return "Please upload a zip file."
|
129 |
+
|
130 |
+
temp_dir = "temp_upload"
|
131 |
+
os.makedirs(temp_dir, exist_ok=True)
|
132 |
+
results = []
|
133 |
+
|
134 |
+
try:
|
135 |
+
with zipfile.ZipFile(zip_file.name, "r") as zip_ref:
|
136 |
+
zip_ref.extractall(temp_dir)
|
137 |
+
|
138 |
+
for root, _, files in os.walk(temp_dir):
|
139 |
+
for file in files:
|
140 |
+
if file.lower().endswith((".jpg", ".jpeg", ".png")):
|
141 |
+
image_path = os.path.join(root, file)
|
142 |
+
image_name = os.path.join(UPLOAD_DIR, f"image_{uuid.uuid4().hex}.jpg")
|
143 |
+
shutil.copy(image_path, image_name)
|
144 |
+
|
145 |
+
try:
|
146 |
+
image = Image.open(image_path).convert("RGB").resize((256, 256))
|
147 |
+
prompt = custom_prompt.strip() if custom_prompt.strip() else f"Write a {caption_type} caption for this image."
|
148 |
+
convo = [
|
149 |
+
{"role": "system", "content": "You are a helpful assistant that generates accurate and relevant image captions."},
|
150 |
+
{"role": "user", "content": prompt.strip()}
|
151 |
+
]
|
152 |
+
|
153 |
+
inputs = processor(images=image, text=convo[1]["content"], return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
154 |
+
|
155 |
+
with torch.no_grad():
|
156 |
+
output = model.generate(**inputs, max_new_tokens=50, temperature=0.7, top_p=0.9)
|
157 |
+
|
158 |
+
caption = processor.decode(output[0], skip_special_tokens=True).strip()
|
159 |
+
keywords = extract_keywords(caption)
|
160 |
+
|
161 |
+
save_to_json(image_name, caption, caption_type, custom_prompt, keywords, error=None)
|
162 |
+
results.append(f"Image: {image_name}\nCaption: {caption}\nKeywords: {', '.join(keywords)}")
|
163 |
+
except Exception as e:
|
164 |
+
error_msg = f"Error processing {image_path}: {str(e)}"
|
165 |
+
logger.error(error_msg)
|
166 |
+
save_to_json(image_name, "", caption_type, custom_prompt, [], error=error_msg)
|
167 |
+
results.append(error_msg)
|
168 |
+
|
169 |
+
shutil.rmtree(temp_dir)
|
170 |
+
return "\n\n".join(results)
|
171 |
+
except Exception as e:
|
172 |
+
error_msg = f"Error processing batch: {str(e)}"
|
173 |
+
logger.error(error_msg)
|
174 |
+
return error_msg
|
175 |
+
|
176 |
+
# Function to search images
|
177 |
+
def search_images(query):
|
178 |
+
try:
|
179 |
+
if not os.path.exists(OUTPUT_JSON_PATH):
|
180 |
+
return "No captions available."
|
181 |
+
|
182 |
+
with open(OUTPUT_JSON_PATH, "r") as f:
|
183 |
+
data = json.load(f)
|
184 |
+
|
185 |
+
results = []
|
186 |
+
for entry in data:
|
187 |
+
if query.lower() in entry["caption"].lower() or any(query.lower() in kw.lower() for kw in entry["keywords"]):
|
188 |
+
results.append((entry["image_name"], f"Caption: {entry['caption']}\nKeywords: {', '.join(entry['keywords'])}"))
|
189 |
+
|
190 |
+
return results if results else "No matches found."
|
191 |
+
except Exception as e:
|
192 |
+
logger.error(f"Error searching images: {str(e)}")
|
193 |
+
return f"Error searching images: {str(e)}"
|
194 |
+
|
195 |
+
# Gradio interface
|
196 |
+
interface = gr.Interface(
|
197 |
+
fn=[process_single_image, process_batch_images, search_images],
|
198 |
+
inputs=[
|
199 |
+
[gr.Image(label="Upload Single Image", type="pil"), gr.Dropdown(choices=["descriptive", "poetic", "humorous"], label="Caption Style", value="descriptive"), gr.Textbox(label="Custom Prompt (optional)", placeholder="e.g., 'Write a poetic caption'")],
|
200 |
+
[gr.File(label="Upload Zip File for Batch Processing", file_types=[".zip"]), gr.Dropdown(choices=["descriptive", "poetic", "humorous"], label="Caption Style", value="descriptive"), gr.Textbox(label="Custom Prompt (optional)", placeholder="e.g., 'Write a poetic caption'")],
|
201 |
+
[gr.Textbox(label="Search Query", placeholder="e.g., 'beach'")]
|
202 |
+
],
|
203 |
+
outputs=[
|
204 |
+
gr.Textbox(label="Single Image Result"),
|
205 |
+
gr.Textbox(label="Batch Processing Results"),
|
206 |
+
gr.Gallery(label="Search Results")
|
207 |
+
],
|
208 |
+
title="Image Captioning with LLAVA",
|
209 |
+
description="Upload single or batch images, generate captions with custom styles, and search by captions or keywords. Results are saved to captions.json."
|
210 |
+
)
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.0
|
2 |
+
transformers==4.46.0
|
3 |
+
torch==2.4.1
|
4 |
+
Pillow==10.4.0
|
5 |
+
accelerate==0.34.2
|
6 |
+
spacy==3.7.6
|
7 |
+
en-core-web-sm==3.7.0
|