retromarz commited on
Commit
7377f5f
·
verified ·
1 Parent(s): 14800ee

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +213 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from transformers import LlavaForConditionalGeneration, AutoProcessor
5
+ import logging
6
+ import json
7
+ import os
8
+ from datetime import datetime
9
+ import uuid
10
+ import spacy
11
+ from spacy.cli import download
12
+ import zipfile
13
+ import shutil
14
+
15
+ # Set up logging
16
+ logging.basicConfig(level=logging.INFO)
17
+ logger = logging.getLogger(__name__)
18
+
19
+ # Define paths
20
+ OUTPUT_JSON_PATH = "captions.json"
21
+ UPLOAD_DIR = "uploads"
22
+ os.makedirs(UPLOAD_DIR, exist_ok=True)
23
+
24
+ # Load SpaCy model for keyword extraction
25
+ try:
26
+ try:
27
+ nlp = spacy.load("en_core_web_sm")
28
+ except OSError:
29
+ logger.info("Downloading en_core_web_sm model...")
30
+ download("en_core_web_sm")
31
+ nlp = spacy.load("en_core_web_sm")
32
+ except Exception as e:
33
+ logger.error(f"Error loading SpaCy model: {str(e)}")
34
+ raise
35
+
36
+ # Load LLAVA model and processor
37
+ MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
38
+ try:
39
+ processor = AutoProcessor.from_pretrained(MODEL_PATH)
40
+ model = LlavaForConditionalGeneration.from_pretrained(
41
+ MODEL_PATH,
42
+ torch_dtype=torch.float16,
43
+ low_cpu_mem_usage=True,
44
+ device_map="auto"
45
+ )
46
+ model.eval()
47
+ logger.info("Model and processor loaded successfully.")
48
+ except Exception as e:
49
+ logger.error(f"Error loading model: {str(e)}")
50
+ raise
51
+
52
+ # Function to extract keywords
53
+ def extract_keywords(text):
54
+ try:
55
+ doc = nlp(text)
56
+ keywords = [token.text.lower() for token in doc if token.pos_ in ["NOUN", "ADJ"] and not token.is_stop]
57
+ return list(set(keywords))[:5]
58
+ except Exception as e:
59
+ logger.error(f"Error extracting keywords: {str(e)}")
60
+ return []
61
+
62
+ # Function to save metadata to JSON
63
+ def save_to_json(image_name, caption, caption_type, custom_prompt, keywords, error=None):
64
+ result = {
65
+ "image_name": image_name,
66
+ "caption": caption,
67
+ "caption_type": caption_type,
68
+ "custom_prompt": custom_prompt,
69
+ "keywords": keywords,
70
+ "timestamp": datetime.now().isoformat(),
71
+ "error": error
72
+ }
73
+ try:
74
+ if os.path.exists(OUTPUT_JSON_PATH):
75
+ with open(OUTPUT_JSON_PATH, "r") as f:
76
+ data = json.load(f)
77
+ else:
78
+ data = []
79
+ except Exception as e:
80
+ logger.error(f"Error reading JSON file: {str(e)}")
81
+ data = []
82
+
83
+ data.append(result)
84
+ try:
85
+ with open(OUTPUT_JSON_PATH, "w") as f:
86
+ json.dump(data, f, indent=4)
87
+ logger.info(f"Saved result to {OUTPUT_JSON_PATH}")
88
+ except Exception as e:
89
+ logger.error(f"Error writing to JSON file: {str(e)}")
90
+
91
+ # Function to process single image
92
+ def process_single_image(image, caption_type, custom_prompt):
93
+ if image is None:
94
+ error_msg = "Please upload an image."
95
+ save_to_json("unknown", error_msg, caption_type, custom_prompt, [], error=error_msg)
96
+ return error_msg
97
+
98
+ image_name = os.path.join(UPLOAD_DIR, f"image_{uuid.uuid4().hex}.jpg")
99
+ image.save(image_name)
100
+
101
+ try:
102
+ image = image.resize((256, 256))
103
+ prompt = custom_prompt.strip() if custom_prompt.strip() else f"Write a {caption_type} caption for this image."
104
+ convo = [
105
+ {"role": "system", "content": "You are a helpful assistant that generates accurate and relevant image captions."},
106
+ {"role": "user", "content": prompt.strip()}
107
+ ]
108
+
109
+ inputs = processor(images=image, text=convo[1]["content"], return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
110
+
111
+ with torch.no_grad():
112
+ output = model.generate(**inputs, max_new_tokens=50, temperature=0.7, top_p=0.9)
113
+
114
+ caption = processor.decode(output[0], skip_special_tokens=True).strip()
115
+ keywords = extract_keywords(caption)
116
+
117
+ save_to_json(image_name, caption, caption_type, custom_prompt, keywords, error=None)
118
+ return f"Caption: {caption}\nKeywords: {', '.join(keywords)}"
119
+ except Exception as e:
120
+ error_msg = f"Error generating caption: {str(e)}"
121
+ logger.error(error_msg)
122
+ save_to_json(image_name, "", caption_type, custom_prompt, [], error=error_msg)
123
+ return error_msg
124
+
125
+ # Function to process batch images
126
+ def process_batch_images(zip_file, caption_type, custom_prompt):
127
+ if zip_file is None:
128
+ return "Please upload a zip file."
129
+
130
+ temp_dir = "temp_upload"
131
+ os.makedirs(temp_dir, exist_ok=True)
132
+ results = []
133
+
134
+ try:
135
+ with zipfile.ZipFile(zip_file.name, "r") as zip_ref:
136
+ zip_ref.extractall(temp_dir)
137
+
138
+ for root, _, files in os.walk(temp_dir):
139
+ for file in files:
140
+ if file.lower().endswith((".jpg", ".jpeg", ".png")):
141
+ image_path = os.path.join(root, file)
142
+ image_name = os.path.join(UPLOAD_DIR, f"image_{uuid.uuid4().hex}.jpg")
143
+ shutil.copy(image_path, image_name)
144
+
145
+ try:
146
+ image = Image.open(image_path).convert("RGB").resize((256, 256))
147
+ prompt = custom_prompt.strip() if custom_prompt.strip() else f"Write a {caption_type} caption for this image."
148
+ convo = [
149
+ {"role": "system", "content": "You are a helpful assistant that generates accurate and relevant image captions."},
150
+ {"role": "user", "content": prompt.strip()}
151
+ ]
152
+
153
+ inputs = processor(images=image, text=convo[1]["content"], return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
154
+
155
+ with torch.no_grad():
156
+ output = model.generate(**inputs, max_new_tokens=50, temperature=0.7, top_p=0.9)
157
+
158
+ caption = processor.decode(output[0], skip_special_tokens=True).strip()
159
+ keywords = extract_keywords(caption)
160
+
161
+ save_to_json(image_name, caption, caption_type, custom_prompt, keywords, error=None)
162
+ results.append(f"Image: {image_name}\nCaption: {caption}\nKeywords: {', '.join(keywords)}")
163
+ except Exception as e:
164
+ error_msg = f"Error processing {image_path}: {str(e)}"
165
+ logger.error(error_msg)
166
+ save_to_json(image_name, "", caption_type, custom_prompt, [], error=error_msg)
167
+ results.append(error_msg)
168
+
169
+ shutil.rmtree(temp_dir)
170
+ return "\n\n".join(results)
171
+ except Exception as e:
172
+ error_msg = f"Error processing batch: {str(e)}"
173
+ logger.error(error_msg)
174
+ return error_msg
175
+
176
+ # Function to search images
177
+ def search_images(query):
178
+ try:
179
+ if not os.path.exists(OUTPUT_JSON_PATH):
180
+ return "No captions available."
181
+
182
+ with open(OUTPUT_JSON_PATH, "r") as f:
183
+ data = json.load(f)
184
+
185
+ results = []
186
+ for entry in data:
187
+ if query.lower() in entry["caption"].lower() or any(query.lower() in kw.lower() for kw in entry["keywords"]):
188
+ results.append((entry["image_name"], f"Caption: {entry['caption']}\nKeywords: {', '.join(entry['keywords'])}"))
189
+
190
+ return results if results else "No matches found."
191
+ except Exception as e:
192
+ logger.error(f"Error searching images: {str(e)}")
193
+ return f"Error searching images: {str(e)}"
194
+
195
+ # Gradio interface
196
+ interface = gr.Interface(
197
+ fn=[process_single_image, process_batch_images, search_images],
198
+ inputs=[
199
+ [gr.Image(label="Upload Single Image", type="pil"), gr.Dropdown(choices=["descriptive", "poetic", "humorous"], label="Caption Style", value="descriptive"), gr.Textbox(label="Custom Prompt (optional)", placeholder="e.g., 'Write a poetic caption'")],
200
+ [gr.File(label="Upload Zip File for Batch Processing", file_types=[".zip"]), gr.Dropdown(choices=["descriptive", "poetic", "humorous"], label="Caption Style", value="descriptive"), gr.Textbox(label="Custom Prompt (optional)", placeholder="e.g., 'Write a poetic caption'")],
201
+ [gr.Textbox(label="Search Query", placeholder="e.g., 'beach'")]
202
+ ],
203
+ outputs=[
204
+ gr.Textbox(label="Single Image Result"),
205
+ gr.Textbox(label="Batch Processing Results"),
206
+ gr.Gallery(label="Search Results")
207
+ ],
208
+ title="Image Captioning with LLAVA",
209
+ description="Upload single or batch images, generate captions with custom styles, and search by captions or keywords. Results are saved to captions.json."
210
+ )
211
+
212
+ if __name__ == "__main__":
213
+ interface.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio==4.44.0
2
+ transformers==4.46.0
3
+ torch==2.4.1
4
+ Pillow==10.4.0
5
+ accelerate==0.34.2
6
+ spacy==3.7.6
7
+ en-core-web-sm==3.7.0