Ashwath Vaithinathan Aravindan commited on
Commit
773f1d0
·
0 Parent(s):

test-spaces

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +2 -0
  3. CHANGELOG.md +13 -0
  4. CODE_OF_CONDUCT.md +76 -0
  5. CONTRIBUTING.md +84 -0
  6. Dockerfile +14 -0
  7. LICENSE +202 -0
  8. MAINTAINERS.md +9 -0
  9. README.md +10 -0
  10. SECURITY.md +17 -0
  11. app.py +127 -0
  12. config.py +38 -0
  13. control/recommendation_handler.py +472 -0
  14. customize/customize_embeddings.py +49 -0
  15. customize/customize_helper.py +129 -0
  16. front_log.json +0 -0
  17. helpers/authenticate_api.py +49 -0
  18. helpers/get_credentials.py +63 -0
  19. helpers/save_model.py +60 -0
  20. models/.DS_Store +3 -0
  21. models/all-MiniLM-L6-v2/1_Pooling/config.json +3 -0
  22. models/all-MiniLM-L6-v2/README.md +3 -0
  23. models/all-MiniLM-L6-v2/config.json +3 -0
  24. models/all-MiniLM-L6-v2/config_sentence_transformers.json +3 -0
  25. models/all-MiniLM-L6-v2/model.safetensors +3 -0
  26. models/all-MiniLM-L6-v2/modules.json +3 -0
  27. models/all-MiniLM-L6-v2/sentence_bert_config.json +3 -0
  28. models/all-MiniLM-L6-v2/special_tokens_map.json +3 -0
  29. models/all-MiniLM-L6-v2/tokenizer.json +3 -0
  30. models/all-MiniLM-L6-v2/tokenizer_config.json +3 -0
  31. models/all-MiniLM-L6-v2/vocab.txt +3 -0
  32. models/umap/.DS_Store +3 -0
  33. models/umap/BAAI/bge-large-en-v1.5/encoder.keras +3 -0
  34. models/umap/BAAI/bge-large-en-v1.5/model.pkl +3 -0
  35. models/umap/BAAI/bge-large-en-v1.5/parametric_model.keras +3 -0
  36. models/umap/intfloat/multilingual-e5-large/encoder.keras +3 -0
  37. models/umap/intfloat/multilingual-e5-large/model.pkl +3 -0
  38. models/umap/intfloat/multilingual-e5-large/parametric_model.keras +3 -0
  39. models/umap/sentence-transformers/all-MiniLM-L6-v2/encoder.keras +3 -0
  40. models/umap/sentence-transformers/all-MiniLM-L6-v2/model.pkl +3 -0
  41. models/umap/sentence-transformers/all-MiniLM-L6-v2/parametric_model.keras +3 -0
  42. prompt-sentences-main/README.md +3 -0
  43. prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json +3 -0
  44. prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json +3 -0
  45. prompt-sentences-main/prompt_sentences-multilingual-e5-large.json +3 -0
  46. prompt-sentences-main/prompt_sentences.json +3 -0
  47. prompt-sentences-main/sentences_by_values-all-minilm-l6-v2.png +3 -0
  48. prompt-sentences-main/sentences_by_values-bge-large-en-v1.5.png +3 -0
  49. prompt-sentences-main/sentences_by_values-multilingual-e5-large.png +3 -0
  50. red-team/README.md +46 -0
.DS_Store ADDED
Binary file (10.2 kB). View file
 
.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ models/** filter=lfs diff=lfs merge=lfs -text
2
+ prompt-sentences-main/** filter=lfs diff=lfs merge=lfs -text
CHANGELOG.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Changelog
2
+
3
+ All notable changes to this project will be documented in this file.
4
+
5
+ ## [Unreleased]
6
+
7
+ ## [0.0.1] - 2019-02-15
8
+
9
+ ### Added
10
+ - Added a changelog
11
+
12
+ [unreleased]: https://github.com/ibm/repo-template/compare/v0.0.1...HEAD
13
+ [0.0.1]: https://github.com/ibm/repo-template/releases/tag/v0.0.1
CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to making participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies both within project spaces and in public spaces
49
+ when an individual is representing the project or its community. Examples of
50
+ representing a project or community include using an official project e-mail
51
+ address, posting via an official social media account, or acting as an appointed
52
+ representative at an online or offline event. Representation of a project may be
53
+ further defined and clarified by project maintainers.
54
+
55
+ ## Enforcement
56
+
57
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
58
+ reported by contacting the [project team](./MAINTAINERS.md). All
59
+ complaints will be reviewed and investigated and will result in a response that
60
+ is deemed necessary and appropriate to the circumstances. The project team is
61
+ obligated to maintain confidentiality with regard to the reporter of an incident.
62
+ Further details of specific enforcement policies may be posted separately.
63
+
64
+ Project maintainers who do not follow or enforce the Code of Conduct in good
65
+ faith may face temporary or permanent repercussions as determined by other
66
+ members of the project's leadership.
67
+
68
+ ## Attribution
69
+
70
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71
+ available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72
+
73
+ [homepage]: https://www.contributor-covenant.org
74
+
75
+ For answers to common questions about this code of conduct, see
76
+ https://www.contributor-covenant.org/faq
CONTRIBUTING.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Contributing In General
2
+ Our project welcomes external contributions. If you have an itch, please feel
3
+ free to scratch it.
4
+
5
+ To contribute code or documentation, please submit a **FIXME** [pull request](https://github.com/ibm/repo-template/pulls).
6
+
7
+ A good way to familiarize yourself with the codebase and contribution process is
8
+ to look for and tackle low-hanging fruit in the **FIXME** [issue tracker](https://github.com/ibm/repo-template/issues).
9
+ Before embarking on a more ambitious contribution, please quickly [get in touch](#communication) with us.
10
+
11
+ **Note: We appreciate your effort, and want to avoid a situation where a contribution
12
+ requires extensive rework (by you or by us), sits in backlog for a long time, or
13
+ cannot be accepted at all!**
14
+
15
+ ### Proposing new features
16
+
17
+ If you would like to implement a new feature, please **FIXME** [raise an issue](https://github.com/ibm/repo-template/issues)
18
+ before sending a pull request so the feature can be discussed. This is to avoid
19
+ you wasting your valuable time working on a feature that the project developers
20
+ are not interested in accepting into the code base.
21
+
22
+ ### Fixing bugs
23
+
24
+ If you would like to fix a bug, please **FIXME** [raise an issue](https://github.com/ibm/repo-template/issues) before sending a
25
+ pull request so it can be tracked.
26
+
27
+ ### Merge approval
28
+
29
+ The project maintainers use LGTM (Looks Good To Me) in comments on the code
30
+ review to indicate acceptance. A change requires LGTMs from two of the
31
+ maintainers of each component affected.
32
+
33
+ For a list of the maintainers, see the [MAINTAINERS.md](MAINTAINERS.md) page.
34
+
35
+ ## Legal
36
+
37
+ Each source file must include a license header for the Apache
38
+ Software License 2.0. Using the SPDX format is the simplest approach.
39
+ e.g.
40
+
41
+ ```
42
+ /*
43
+ Copyright <holder> All Rights Reserved.
44
+
45
+ SPDX-License-Identifier: Apache-2.0
46
+ */
47
+ ```
48
+
49
+ We have tried to make it as easy as possible to make contributions. This
50
+ applies to how we handle the legal aspects of contribution. We use the
51
+ same approach - the [Developer's Certificate of Origin 1.1 (DCO)](https://github.com/hyperledger/fabric/blob/master/docs/source/DCO1.1.txt) - that the Linux® Kernel [community](https://elinux.org/Developer_Certificate_Of_Origin)
52
+ uses to manage code contributions.
53
+
54
+ We simply ask that when submitting a patch for review, the developer
55
+ must include a sign-off statement in the commit message.
56
+
57
+ Here is an example Signed-off-by line, which indicates that the
58
+ submitter accepts the DCO:
59
+
60
+ ```
61
+ Signed-off-by: John Doe <john.doe@example.com>
62
+ ```
63
+
64
+ You can include this automatically when you commit a change to your
65
+ local git repository using the following command:
66
+
67
+ ```
68
+ git commit -s
69
+ ```
70
+
71
+ ## Communication
72
+ **FIXME** Please feel free to connect with us on our [Slack channel](link).
73
+
74
+ ## Setup
75
+ **FIXME** Please add any special setup instructions for your project to help the developer
76
+ become productive quickly.
77
+
78
+ ## Testing
79
+ **FIXME** Please provide information that helps the developer test any changes they make
80
+ before submitting.
81
+
82
+ ## Coding style guidelines
83
+ **FIXME** Optional, but recommended: please share any specific style guidelines you might
84
+ have for your project.
Dockerfile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ RUN useradd -m -u 1000 user
4
+ USER user
5
+ ENV PATH="/home/user/.local/bin:$PATH"
6
+
7
+ WORKDIR /app
8
+
9
+ COPY --chown=user ./requirements.txt requirements.txt
10
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
11
+
12
+ COPY --chown=user . /app
13
+
14
+ CMD ["python", "app.py", "--host", "0.0.0.0", "--port", "7860"]
LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "{}"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright {yyyy} {name of copyright owner}
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
202
+
MAINTAINERS.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # MAINTAINERS
2
+
3
+ Mo McElaney - mmcelaney@us.ibm.com
4
+
5
+ JJ Asghar - jja@ibm.com
6
+
7
+ Joe Sepi - joesepi@ibm.com
8
+
9
+ Brad Topol - btopol@us.ibm.com
README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Resapi
3
+ emoji: 🐢
4
+ colorFrom: gray
5
+ colorTo: red
6
+ sdk: docker
7
+ pinned: false
8
+ ---
9
+
10
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
SECURITY.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Security Policy
2
+
3
+ ## Supported Versions
4
+
5
+ Use this section to tell people about which versions of your project are
6
+ currently being supported with security updates.
7
+
8
+ | Version | Supported |
9
+ | ------- | ------------------ |
10
+ | 5.1.x | :white_check_mark: |
11
+ | 5.0.x | :x: |
12
+ | 4.0.x | :white_check_mark: |
13
+ | < 4.0 | :x: |
14
+
15
+ ## Reporting a Vulnerability
16
+
17
+ To report a security issue, please email $VMTalias with a description of the issue, the steps you took to create the issue, affected versions, and if known, mitigations for the issue. Our vulnerability management team will acknowledge receiving your email within 3 working days. This project follows a 90 day disclosure timeline.
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Flask API app and routes.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+
29
+ from flask import Flask, request, jsonify
30
+ from flask_cors import CORS, cross_origin
31
+ from flask_restful import Resource, Api, reqparse
32
+ import control.recommendation_handler as recommendation_handler
33
+ from helpers import get_credentials, authenticate_api, save_model
34
+ import config as cfg
35
+ import logging
36
+ import uuid
37
+ import json
38
+ import os
39
+
40
+ app = Flask(__name__)
41
+
42
+ # configure logging
43
+ logging.basicConfig(
44
+ filename='app.log', # Log file name
45
+ level=logging.INFO, # Log level (INFO, DEBUG, WARNING, ERROR, CRITICAL)
46
+ format='%(asctime)s - %(levelname)s - %(message)s' # Log message format
47
+ )
48
+
49
+ # access the app's logger
50
+ logger = app.logger
51
+ # create user id
52
+ id = str(uuid.uuid4())
53
+
54
+ # swagger configs
55
+ app.register_blueprint(cfg.SWAGGER_BLUEPRINT, url_prefix = cfg.SWAGGER_URL)
56
+ FRONT_LOG_FILE = 'front_log.json'
57
+
58
+
59
+ @app.route("/")
60
+ def index():
61
+ user_ip = request.remote_addr
62
+ logger.info(f'USER {user_ip} - ID {id} - started the app')
63
+ return "Ready!"
64
+
65
+ @app.route("/recommend", methods=['GET'])
66
+ @cross_origin()
67
+ def recommend():
68
+ user_ip = request.remote_addr
69
+ hf_token, hf_url = get_credentials.get_credentials()
70
+ api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
71
+ prompt_json = recommendation_handler.populate_json()
72
+ args = request.args
73
+ prompt = args.get("prompt")
74
+ recommendation_json = recommendation_handler.recommend_prompt(prompt, prompt_json,
75
+ api_url, headers)
76
+ logger.info(f'USER - {user_ip} - ID {id} - accessed recommend route')
77
+ logger.info(f'RECOMMEND ROUTE - request: {prompt} response: {recommendation_json}')
78
+ return recommendation_json
79
+
80
+ @app.route("/get_thresholds", methods=['GET'])
81
+ @cross_origin()
82
+ def get_thresholds():
83
+ hf_token, hf_url = get_credentials.get_credentials()
84
+ api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
85
+ prompt_json = recommendation_handler.populate_json()
86
+ model_id = 'sentence-transformers/all-minilm-l6-v2'
87
+ args = request.args
88
+ #print("args list = ", args)
89
+ prompt = args.get("prompt")
90
+ thresholds_json = recommendation_handler.get_thresholds(prompt, prompt_json, api_url,
91
+ headers, model_id)
92
+ return thresholds_json
93
+
94
+ @app.route("/recommend_local", methods=['GET'])
95
+ @cross_origin()
96
+ def recommend_local():
97
+ model_id, model_path = save_model.save_model()
98
+ prompt_json = recommendation_handler.populate_json()
99
+ args = request.args
100
+ print("args list = ", args)
101
+ prompt = args.get("prompt")
102
+ local_recommendation_json = recommendation_handler.recommend_local(prompt, prompt_json,
103
+ model_id, model_path)
104
+ return local_recommendation_json
105
+
106
+ @app.route("/log", methods=['POST'])
107
+ @cross_origin()
108
+ def log():
109
+ f_path = 'static/demo/log/'
110
+ new_data = request.get_json()
111
+
112
+ try:
113
+ with open(f_path+FRONT_LOG_FILE, 'r') as f:
114
+ existing_data = json.load(f)
115
+ except FileNotFoundError:
116
+ existing_data = []
117
+
118
+ existing_data.update(new_data)
119
+
120
+ #log_data = request.json
121
+ with open(f_path+FRONT_LOG_FILE, 'w') as f:
122
+ json.dump(existing_data, f)
123
+ return jsonify({'message': 'Data added successfully', 'data': existing_data}), 201
124
+
125
+ if __name__=='__main__':
126
+ debug_mode = os.getenv('FLASK_DEBUG', 'False').lower() in ['true', '1', 't']
127
+ app.run(host='0.0.0.0', port='8080', debug=debug_mode)
config.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Swagger configuration.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ from flask_swagger_ui import get_swaggerui_blueprint
29
+
30
+ SWAGGER_URL = '/swagger'
31
+ API_URL = '/static/swagger.json'
32
+ SWAGGER_BLUEPRINT = get_swaggerui_blueprint(
33
+ SWAGGER_URL,
34
+ API_URL,
35
+ config={
36
+ 'app_name': "Prompt Recommendation API"
37
+ }
38
+ )
control/recommendation_handler.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Python lib to recommend prompts.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ import requests
29
+ import json
30
+ import math
31
+ import re
32
+ import warnings
33
+ import pandas as pd
34
+ import numpy as np
35
+ from sklearn.metrics.pairwise import cosine_similarity
36
+ import os
37
+ #os.environ['TRANSFORMERS_CACHE'] ="./models/allmini/cache"
38
+ import os.path
39
+ from sentence_transformers import SentenceTransformer
40
+ from umap import UMAP
41
+ import tensorflow as tf
42
+ from umap.parametric_umap import ParametricUMAP, load_ParametricUMAP
43
+ from sentence_transformers import SentenceTransformer
44
+
45
+ def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json',
46
+ existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'):
47
+ """
48
+ Function that receives a default json file with
49
+ empty embeddings and checks whether there is a
50
+ partially populated json file.
51
+
52
+ Args:
53
+ json_file_path: Path to json default file with
54
+ empty embeddings.
55
+ existing_json_populated_file_path: Path to partially
56
+ populated json file.
57
+
58
+ Returns:
59
+ A json.
60
+
61
+ Raises:
62
+ Exception when json file can't be loaded.
63
+ """
64
+ json_file = json_file_path
65
+ if(os.path.isfile(existing_json_populated_file_path)):
66
+ json_file = existing_json_populated_file_path
67
+ try:
68
+ prompt_json = json.load(open(json_file))
69
+ json_error = None
70
+ return prompt_json, json_error
71
+ except Exception as e:
72
+ json_error = e
73
+ print(f'Error when loading sentences json file: {json_error}')
74
+ prompt_json = None
75
+ return prompt_json, json_error
76
+
77
+ def query(texts, api_url, headers):
78
+ """
79
+ Function that requests embeddings for a given sentence.
80
+
81
+ Args:
82
+ texts: The sentence or entered prompt text.
83
+ api_url: API url for HF request.
84
+ headers: Content headers for HF request.
85
+
86
+ Returns:
87
+ A json with the sentence embeddings.
88
+
89
+ Raises:
90
+ Warning: Warns about sentences that have more
91
+ than 256 words.
92
+ """
93
+ for t in texts:
94
+ n_words = len(re.split(r"\s+", t))
95
+ if(n_words > 256):
96
+ # warning in case of prompts longer than 256 words
97
+ warnings.warn("Warning: Sentence provided is longer than 256 words. Model all-MiniLM-L6-v2 expects sentences up to 256 words.")
98
+ warnings.warn("Word count:{}".format(n_words))
99
+ if('sentence-transformers/all-MiniLM-L6-v2' in api_url):
100
+ model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
101
+ out = model.encode(texts).tolist()
102
+ else:
103
+ response = requests.post(api_url, headers=headers, json={"inputs": texts, "options":{"wait_for_model":True}})
104
+ out = response.json()
105
+ return out
106
+
107
+ def split_into_sentences(prompt):
108
+ """
109
+ Function that splits the input text into sentences based
110
+ on punctuation (.!?). The regular expression pattern
111
+ '(?<=[.!?]) +' ensures that we split after a sentence-ending
112
+ punctuation followed by one or more spaces.
113
+
114
+ Args:
115
+ prompt: The entered prompt text.
116
+
117
+ Returns:
118
+ A list of extracted sentences.
119
+
120
+ Raises:
121
+ Nothing.
122
+ """
123
+ sentences = re.split(r'(?<=[.!?]) +', prompt)
124
+ return sentences
125
+
126
+
127
+ def get_similarity(embedding1, embedding2):
128
+ """
129
+ Function that returns cosine similarity between
130
+ two embeddings.
131
+
132
+ Args:
133
+ embedding1: first embedding.
134
+ embedding2: second embedding.
135
+
136
+ Returns:
137
+ The similarity value.
138
+
139
+ Raises:
140
+ Nothing.
141
+ """
142
+ v1 = np.array( embedding1 ).reshape( 1, -1 )
143
+ v2 = np.array( embedding2 ).reshape( 1, -1 )
144
+ similarity = cosine_similarity( v1, v2 )
145
+ return similarity[0, 0]
146
+
147
+ def get_distance(embedding1, embedding2):
148
+ """
149
+ Function that returns euclidean distance between
150
+ two embeddings.
151
+
152
+ Args:
153
+ embedding1: first embedding.
154
+ embedding2: second embedding.
155
+
156
+ Returns:
157
+ The euclidean distance value.
158
+
159
+ Raises:
160
+ Nothing.
161
+ """
162
+ total = 0
163
+ if(len(embedding1) != len(embedding2)):
164
+ return math.inf
165
+ for i, obj in enumerate(embedding1):
166
+ total += math.pow(embedding2[0][i] - embedding1[0][i], 2)
167
+ return(math.sqrt(total))
168
+
169
+ def sort_by_similarity(e):
170
+ """
171
+ Function that sorts by similarity.
172
+
173
+ Args:
174
+ e:
175
+
176
+ Returns:
177
+ The sorted similarity value.
178
+
179
+ Raises:
180
+ Nothing.
181
+ """
182
+ return e['similarity']
183
+
184
+ def recommend_prompt(prompt, prompt_json, api_url, headers, add_lower_threshold = 0.3,
185
+ add_upper_threshold = 0.5, remove_lower_threshold = 0.1,
186
+ remove_upper_threshold = 0.5, model_id = 'sentence-transformers/all-minilm-l6-v2'):
187
+ """
188
+ Function that recommends prompts additions or removals.
189
+
190
+ Args:
191
+ prompt: The entered prompt text.
192
+ prompt_json: Json file populated with embeddings.
193
+ api_url: API url for HF request.
194
+ headers: Content headers for HF request.
195
+ add_lower_threshold: Lower threshold for sentence addition,
196
+ the default value is 0.3.
197
+ add_upper_threshold: Upper threshold for sentence addition,
198
+ the default value is 0.5.
199
+ remove_lower_threshold: Lower threshold for sentence removal,
200
+ the default value is 0.3.
201
+ remove_upper_threshold: Upper threshold for sentence removal,
202
+ the default value is 0.5.
203
+ model_id: Id of the model, the default value is all-minilm-l6-v2 movel.
204
+
205
+ Returns:
206
+ Prompt values to add or remove.
207
+
208
+ Raises:
209
+ Nothing.
210
+ """
211
+ if(model_id == 'baai/bge-large-en-v1.5' ):
212
+ json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json'
213
+ umap_model = load_ParametricUMAP('./models/umap/BAAI/bge-large-en-v1.5/')
214
+ elif(model_id == 'intfloat/multilingual-e5-large'):
215
+ json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json'
216
+ umap_model = load_ParametricUMAP('./models/umap/intfloat/multilingual-e5-large/')
217
+ else: # fall back to all-minilm as default
218
+ json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'
219
+ umap_model = load_ParametricUMAP('./models/umap/sentence-transformers/all-MiniLM-L6-v2/')
220
+
221
+ prompt_json = json.load(open(json_file))
222
+
223
+ # Output initialization
224
+ out, out['input'], out['add'], out['remove'] = {}, {}, {}, {}
225
+ input_items, items_to_add, items_to_remove = [], [], []
226
+
227
+ # Spliting prompt into sentences
228
+ input_sentences = split_into_sentences(prompt)
229
+
230
+ # TODO: Request embeddings for input an d store in a input_embeddingS
231
+
232
+ # Recommendation of values to add to the current prompt
233
+ # Using only the last sentence for the add recommendation
234
+ input_embedding = query(input_sentences[-1], api_url, headers)
235
+ for v in prompt_json['positive_values']:
236
+ # Dealing with values without prompts and makinig sure they have the same dimensions
237
+ if(len(v['centroid']) == len(input_embedding)):
238
+ if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > add_lower_threshold):
239
+ closer_prompt = -1
240
+ for p in v['prompts']:
241
+ d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding']))
242
+ # The sentence_threshold is being used as a ceiling meaning that for high similarities the sentence/value might already be presente in the prompt
243
+ # So, we don't want to recommend adding something that is already there
244
+ if(d_prompt > closer_prompt and d_prompt > add_lower_threshold and d_prompt < add_upper_threshold):
245
+ closer_prompt = d_prompt
246
+ items_to_add.append({
247
+ 'value': v['label'],
248
+ 'prompt': p['text'],
249
+ 'similarity': d_prompt,
250
+ 'x': p['x'],
251
+ 'y': p['y']})
252
+ out['add'] = items_to_add
253
+
254
+ # Recommendation of values to remove from the current prompt
255
+ i = 0
256
+
257
+ # Recommendation of values to remove from the current prompt
258
+ for sentence in input_sentences:
259
+ input_embedding = query(sentence, api_url, headers) # remote
260
+ # Obtaining XY coords for input sentences from a parametric UMAP model
261
+ if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''):
262
+ embeddings_umap = umap_model.transform(tf.expand_dims(pd.DataFrame(input_embedding), axis=0))
263
+ input_items.append({
264
+ 'sentence': sentence,
265
+ 'x': str(embeddings_umap[0][0]),
266
+ 'y': str(embeddings_umap[0][1])
267
+ })
268
+
269
+ for v in prompt_json['negative_values']:
270
+ # Dealing with values without prompts and makinig sure they have the same dimensions
271
+ if(len(v['centroid']) == len(input_embedding)):
272
+ if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > remove_lower_threshold):
273
+ closer_prompt = -1
274
+ for p in v['prompts']:
275
+ d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding']))
276
+ # A more restrict threshold is used here to prevent false positives
277
+ # The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts
278
+ # So, yes, we want to recommend the removal of something adversarial we've found
279
+ if(d_prompt > closer_prompt and d_prompt > remove_upper_threshold):
280
+ closer_prompt = d_prompt
281
+ items_to_remove.append({
282
+ 'value': v['label'],
283
+ 'sentence': sentence,
284
+ 'sentence_index': i,
285
+ 'closest_harmful_sentence': p['text'],
286
+ 'similarity': d_prompt,
287
+ 'x': p['x'],
288
+ 'y': p['y']})
289
+ out['remove'] = items_to_remove
290
+ i += 1
291
+
292
+ out['input'] = input_items
293
+
294
+ out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True)
295
+ values_map = {}
296
+ for item in out['add'][:]:
297
+ if(item['value'] in values_map):
298
+ out['add'].remove(item)
299
+ else:
300
+ values_map[item['value']] = item['similarity']
301
+ out['add'] = out['add'][0:5]
302
+
303
+ out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True)
304
+ values_map = {}
305
+ for item in out['remove'][:]:
306
+ if(item['value'] in values_map):
307
+ out['remove'].remove(item)
308
+ else:
309
+ values_map[item['value']] = item['similarity']
310
+ out['remove'] = out['remove'][0:5]
311
+ return out
312
+
313
+ def get_thresholds(prompts, prompt_json, api_url, headers, model_id = 'sentence-transformers/all-minilm-l6-v2'):
314
+ """
315
+ Function that recommends thresholds given an array of prompts.
316
+
317
+ Args:
318
+ prompts: The array with samples of prompts to be used in the system.
319
+ prompt_json: Sentences to be forwarded to the recommendation endpoint.
320
+ model_id: Id of the model, the default value is all-minilm-l6-v2 model.
321
+
322
+ Returns:
323
+ A map with thresholds for the sample prompts and the informed model.
324
+
325
+ Raises:
326
+ Nothing.
327
+ """
328
+ # Array limits for retrieving the thresholds
329
+ # if( len( prompts ) < 10 or len( prompts ) > 30 ):
330
+ # return -1
331
+ add_similarities = []
332
+ remove_similarities = []
333
+
334
+ for p_id, p in enumerate(prompts):
335
+ out = recommend_prompt(p, prompt_json, api_url, headers, 0, 1, 0, 0, model_id) # Wider possible range
336
+
337
+ for r in out['add']:
338
+ add_similarities.append(r['similarity'])
339
+ for r in out['remove']:
340
+ remove_similarities.append(r['similarity'])
341
+
342
+ add_similarities_df = pd.DataFrame({'similarity': add_similarities})
343
+ remove_similarities_df = pd.DataFrame({'similarity': remove_similarities})
344
+
345
+ thresholds = {}
346
+ thresholds['add_lower_threshold'] = round(add_similarities_df.describe([.1]).loc['10%', 'similarity'], 1)
347
+ thresholds['add_higher_threshold'] = round(add_similarities_df.describe([.9]).loc['90%', 'similarity'], 1)
348
+ thresholds['remove_lower_threshold'] = round(remove_similarities_df.describe([.1]).loc['10%', 'similarity'], 1)
349
+ thresholds['remove_higher_threshold'] = round(remove_similarities_df.describe([.9]).loc['90%', 'similarity'], 1)
350
+
351
+ return thresholds
352
+
353
+ def recommend_local(prompt, prompt_json, model_id, model_path = './models/all-MiniLM-L6-v2/', add_lower_threshold = 0.3,
354
+ add_upper_threshold = 0.5, remove_lower_threshold = 0.1,
355
+ remove_upper_threshold = 0.5):
356
+ """
357
+ Function that recommends prompts additions or removals
358
+ using a local model.
359
+
360
+ Args:
361
+ prompt: The entered prompt text.
362
+ prompt_json: Json file populated with embeddings.
363
+ model_id: Id of the local model.
364
+ model_path: Path to the local model.
365
+
366
+ Returns:
367
+ Prompt values to add or remove.
368
+
369
+ Raises:
370
+ Nothing.
371
+ """
372
+ if(model_id == 'baai/bge-large-en-v1.5' ):
373
+ json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json'
374
+ umap_model = load_ParametricUMAP('./models/umap/BAAI/bge-large-en-v1.5/')
375
+ elif(model_id == 'intfloat/multilingual-e5-large'):
376
+ json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json'
377
+ umap_model = load_ParametricUMAP('./models/umap/intfloat/multilingual-e5-large/')
378
+ else: # fall back to all-minilm as default
379
+ json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'
380
+ umap_model = load_ParametricUMAP('./models/umap/sentence-transformers/all-MiniLM-L6-v2/')
381
+
382
+ prompt_json = json.load(open(json_file))
383
+
384
+ # Output initialization
385
+ out, out['input'], out['add'], out['remove'] = {}, {}, {}, {}
386
+ input_items, items_to_add, items_to_remove = [], [], []
387
+
388
+ # Spliting prompt into sentences
389
+ input_sentences = split_into_sentences(prompt)
390
+
391
+ # Recommendation of values to add to the current prompt
392
+ # Using only the last sentence for the add recommendation
393
+ model = SentenceTransformer(model_path)
394
+ input_embedding = model.encode(input_sentences[-1])
395
+
396
+ for v in prompt_json['positive_values']:
397
+ # Dealing with values without prompts and makinig sure they have the same dimensions
398
+ if(len(v['centroid']) == len(input_embedding)):
399
+ if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > add_lower_threshold):
400
+ closer_prompt = -1
401
+ for p in v['prompts']:
402
+ d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding']))
403
+ # The sentence_threshold is being used as a ceiling meaning that for high similarities the sentence/value might already be presente in the prompt
404
+ # So, we don't want to recommend adding something that is already there
405
+ if(d_prompt > closer_prompt and d_prompt > add_lower_threshold and d_prompt < add_upper_threshold):
406
+ closer_prompt = d_prompt
407
+ items_to_add.append({
408
+ 'value': v['label'],
409
+ 'prompt': p['text'],
410
+ 'similarity': d_prompt,
411
+ 'x': p['x'],
412
+ 'y': p['y']})
413
+ out['add'] = items_to_add
414
+
415
+ # Recommendation of values to remove from the current prompt
416
+ i = 0
417
+
418
+ # Recommendation of values to remove from the current prompt
419
+ for sentence in input_sentences:
420
+ input_embedding = model.encode(sentence) # local
421
+ # Obtaining XY coords for input sentences from a parametric UMAP model
422
+ if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''):
423
+ embeddings_umap = umap_model.transform(tf.expand_dims(pd.DataFrame(input_embedding), axis=0))
424
+ input_items.append({
425
+ 'sentence': sentence,
426
+ 'x': str(embeddings_umap[0][0]),
427
+ 'y': str(embeddings_umap[0][1])
428
+ })
429
+
430
+ for v in prompt_json['negative_values']:
431
+ # Dealing with values without prompts and makinig sure they have the same dimensions
432
+ if(len(v['centroid']) == len(input_embedding)):
433
+ if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > remove_lower_threshold):
434
+ closer_prompt = -1
435
+ for p in v['prompts']:
436
+ d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding']))
437
+ # A more restrict threshold is used here to prevent false positives
438
+ # The sentence_threhold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts
439
+ # So, yes, we want to recommend the revolval of something adversarial we've found
440
+ if(d_prompt > closer_prompt and d_prompt > remove_upper_threshold):
441
+ closer_prompt = d_prompt
442
+ items_to_remove.append({
443
+ 'value': v['label'],
444
+ 'sentence': sentence,
445
+ 'sentence_index': i,
446
+ 'closest_harmful_sentence': p['text'],
447
+ 'similarity': d_prompt,
448
+ 'x': p['x'],
449
+ 'y': p['y']})
450
+ out['remove'] = items_to_remove
451
+ i += 1
452
+
453
+ out['input'] = input_items
454
+
455
+ out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True)
456
+ values_map = {}
457
+ for item in out['add'][:]:
458
+ if(item['value'] in values_map):
459
+ out['add'].remove(item)
460
+ else:
461
+ values_map[item['value']] = item['similarity']
462
+ out['add'] = out['add'][0:5]
463
+
464
+ out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True)
465
+ values_map = {}
466
+ for item in out['remove'][:]:
467
+ if(item['value'] in values_map):
468
+ out['remove'].remove(item)
469
+ else:
470
+ values_map[item['value']] = item['similarity']
471
+ out['remove'] = out['remove'][0:5]
472
+ return out
customize/customize_embeddings.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Python function to customize json sentences locally.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ import os
29
+ import json
30
+ import pandas as pd
31
+ import numpy as np
32
+ import customize_helper
33
+
34
+ # Sentence transformer model HF
35
+ model_path = 'models/all-MiniLM-L6-v2'
36
+ model_id = model_path.split("/")[1]
37
+
38
+ # INPUT FILE
39
+ # Default file with empty embeddings
40
+ json_in_file = 'prompt-sentences-main/prompt_sentences.json'
41
+ json_in_file_name = json_in_file.split(".json")[0]
42
+
43
+ # OUTPUT FILE
44
+ json_out_file_name = f'{json_in_file_name}-{model_id}.json'
45
+
46
+ prompt_json = json.load(open(json_in_file))
47
+ prompt_json_embeddings = customize_helper.populate_embeddings(prompt_json, model_path)
48
+ prompt_json_centroids = customize_helper.populate_centroids(prompt_json_embeddings)
49
+ customize_helper.save_json(prompt_json_centroids, json_out_file_name)
customize/customize_helper.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Python helper function to customize json sentences locally.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ import os
29
+ import json
30
+ import pandas as pd
31
+ import numpy as np
32
+ import math
33
+ from sentence_transformers import SentenceTransformer
34
+
35
+ # Requests embeddings for a given sentence
36
+ def query_model(texts, model_path):
37
+ out = []
38
+ model = SentenceTransformer(model_path)
39
+ input_embedding = model.encode(texts)
40
+ out.append(input_embedding)
41
+ if( out != [] ):
42
+ return out[0]
43
+ else:
44
+ return out
45
+
46
+ # Returns euclidean distance between two embeddings
47
+ def get_distance(embedding1, embedding2):
48
+ total = 0
49
+ if( len(embedding1) != len(embedding2)):
50
+ return math.inf
51
+
52
+ for i, obj in enumerate(embedding1):
53
+ total += math.pow(embedding2[0][i] - embedding1[0][i], 2)
54
+ return(math.sqrt(total))
55
+
56
+ # Returns the centroid for a given value
57
+ def get_centroid(v, dimension = 384, k = 10):
58
+ centroid = [0] * dimension
59
+ count = 0
60
+ for p in v['prompts']:
61
+ i = 0
62
+ while i < len(p['embedding']):
63
+ centroid[i] += p['embedding'][i]
64
+ i += 1
65
+ count += 1
66
+ i = 0
67
+ while i < len(centroid):
68
+ centroid[i] /= count
69
+ i += 1
70
+
71
+ # Update centroid considering only the k-near elements
72
+ if(len(v['prompts']) <= k):
73
+ return centroid
74
+ else:
75
+ k_items = pd.DataFrame(columns=['embedding', 'distance'])
76
+ for p in v['prompts']:
77
+ dist = get_distance(pd.DataFrame(centroid), pd.DataFrame(p['embedding']))
78
+ k_items = pd.concat([pd.DataFrame([[p['embedding'], dist]], columns=k_items.columns), k_items], ignore_index=True)
79
+
80
+ k_items = k_items.sort_values(by='distance')
81
+ k_items = k_items.head(k)
82
+
83
+ # Computing centroid only for the k-near elements
84
+ centroid = [0] * dimension
85
+ for i, embedding in enumerate(k_items['embedding']):
86
+ for j, dimension in enumerate(embedding):
87
+ centroid[j] += embedding[j]
88
+ i = 0
89
+ while i < len(centroid):
90
+ centroid[i] /= k
91
+ i += 1
92
+ return centroid
93
+
94
+ def populate_embeddings(prompt_json, model_path):
95
+ errors, successess = 0, 0
96
+ for v in prompt_json['positive_values']:
97
+ for p in v['prompts']:
98
+ if( p['text'] != '' and p['embedding'] == []): # only considering missing embeddings
99
+ embedding = query_model(p['text'], model_path)
100
+ if( 'error' in embedding ):
101
+ p['embedding'] = []
102
+ errors += 1
103
+ else:
104
+ p['embedding'] = embedding.tolist()
105
+ #successes += 1
106
+
107
+ for v in prompt_json['negative_values']:
108
+ for p in v['prompts']:
109
+ if(p['text'] != '' and p['embedding'] == []):
110
+ embedding = query_model(p['text'], model_path)
111
+ if('error' in embedding):
112
+ p['embedding'] = []
113
+ errors += 1
114
+ else:
115
+ p['embedding'] = embedding.tolist()
116
+ #successes += 1
117
+ return prompt_json
118
+
119
+ def populate_centroids(prompt_json):
120
+ for v in prompt_json['positive_values']:
121
+ v['centroid'] = get_centroid(v, dimension = 384, k = 10)
122
+ for v in prompt_json['negative_values']:
123
+ v['centroid'] = get_centroid(v, dimension = 384, k = 10)
124
+ return prompt_json
125
+
126
+ # Saving the embeddings for a specific LLM
127
+ def save_json(prompt_json, json_out_file_name):
128
+ with open(json_out_file_name, 'w') as outfile:
129
+ json.dump(prompt_json, outfile)
front_log.json ADDED
File without changes
helpers/authenticate_api.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Python helper function to authenticate in HF API.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ import os
29
+
30
+ def authenticate_api(hf_token, hf_url):
31
+ """
32
+ Function authenticate in HuggingFace API.
33
+
34
+ Args:
35
+ hf_token: HugginFace personal token.
36
+ hf_url: HuggingFace url to be accessed.
37
+
38
+ Returns:
39
+ An api url and headers.
40
+
41
+ Raises:
42
+ Nothing.
43
+ """
44
+ # Sentence transformer model
45
+ model_id = "sentence-transformers/all-MiniLM-L6-v2"
46
+
47
+ api_url = f"{hf_url}{model_id}"
48
+ headers = {"Authorization": f"Bearer {hf_token}"}
49
+ return api_url, headers
helpers/get_credentials.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Python helper function to get HF credentials.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ import os
29
+ import sys
30
+
31
+ def get_credentials():
32
+ """
33
+ Function that loads HF credentials from env file.
34
+ The function exits the app if HF token is missing.
35
+
36
+ Args:
37
+ None.
38
+
39
+ Returns:
40
+ hf_token: personal HuggingFace token.
41
+ hf_url: HuggingFace url to be used.
42
+
43
+ Raises:
44
+ ValueError when hf_token and hf_url
45
+ values are missing or incorrect.
46
+ """
47
+ # Loading hugging face token from env file
48
+ default_hf_url = 'https://api-inference.huggingface.co/pipeline/feature-extraction/'
49
+ try:
50
+ hf_token = os.environ.get('HF_TOKEN')
51
+ if not hf_token or hf_token == '<include-token-here>':
52
+ raise ValueError
53
+ except:
54
+ print('Please include your HF_TOKEN in the .env file')
55
+ sys.exit(1)
56
+ try:
57
+ hf_url = os.environ.get('HF_URL')
58
+ if not hf_url:
59
+ raise ValueError
60
+ except:
61
+ print('Please include your HF_URL in the .env file')
62
+ return hf_token, default_hf_url
63
+ return hf_token, hf_url
helpers/save_model.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # Copyright 2021, IBM Corporation.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Python helper function to save HF model locally.
20
+ """
21
+
22
+ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
23
+ __copyright__ = "IBM Corporation 2024"
24
+ __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
25
+ __license__ = "Apache 2.0"
26
+ __version__ = "0.0.1"
27
+
28
+ import os
29
+ from sentence_transformers import SentenceTransformer
30
+
31
+ def save_model():
32
+ """
33
+ Function that saves an HF model locally.
34
+
35
+ Args:
36
+ None.
37
+
38
+ Returns:
39
+ The model id and local path.
40
+
41
+ Raises:
42
+ Nothing.
43
+ """
44
+ # sentence transformer model
45
+ model_id = "sentence-transformers/all-MiniLM-L6-v2"
46
+
47
+ # download pretrained model
48
+ model = SentenceTransformer(model_id)
49
+ model_path = "./models/all-MiniLM-L6-v2/"
50
+
51
+ # save to local directory
52
+ try:
53
+ model.save(model_path)
54
+ saved_message = f"model {model_id} saved to {model_path}"
55
+ print(saved_message)
56
+ except:
57
+ ('There was an error when saving the model')
58
+
59
+ return model_id, model_path
60
+
models/.DS_Store ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb339d088a1fb5f6b71960caa5f24eaebcafeb1fa0984e463096f11b4a62af0f
3
+ size 6148
models/all-MiniLM-L6-v2/1_Pooling/config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19c83805e1ce4174f3fbfec4ac8d3b8dbae0c958f8fd51b80937eb33e0c5335
3
+ size 296
models/all-MiniLM-L6-v2/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:766a000da416a8a45760fce75dd387cc2ba3a358f7c58b4813a7b222ddb32471
3
+ size 10659
models/all-MiniLM-L6-v2/config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ed54a1b81ace26d4a6b348b583d197a0e9b837297dc073748aa327b87d136df
3
+ size 678
models/all-MiniLM-L6-v2/config_sentence_transformers.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c2b2ccfc43cb4f99b9ea0d7df0a8b60be969b0c5c73fd159a71a82e6d981337
3
+ size 195
models/all-MiniLM-L6-v2/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
3
+ size 90864192
models/all-MiniLM-L6-v2/modules.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
3
+ size 349
models/all-MiniLM-L6-v2/sentence_bert_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc1993fde0a95c24ec6c022539d41cf6e2f7c9721e5415d6fb6897472a9cd4b7
3
+ size 53
models/all-MiniLM-L6-v2/special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d5b662e421ea9fac075174bb0688ee0d9431699900b90662acd44b2a350503a
3
+ size 695
models/all-MiniLM-L6-v2/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da0e79933b9ed51798a3ae27893d3c5fa4a201126cef75586296df9b4d2c62a0
3
+ size 711661
models/all-MiniLM-L6-v2/tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:085f1ef19e247fdef3c6ff75d5115d7d9c7c3196861380c434af09df3d7cf9bc
3
+ size 1434
models/all-MiniLM-L6-v2/vocab.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
3
+ size 231508
models/umap/.DS_Store ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f3d5183e0e0ae756ae9eca064a916bc04b0dc7cdcb2806f83526a8b1115bd1
3
+ size 6148
models/umap/BAAI/bge-large-en-v1.5/encoder.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdfcb0b99075067e7269fb788c56511c2aba5d18e756b14e5effb02c30e80797
3
+ size 1256574
models/umap/BAAI/bge-large-en-v1.5/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e234d09bc51bd3555472871b04836cddacddea8d75cb912949e6ba93a76002b2
3
+ size 10386660
models/umap/BAAI/bge-large-en-v1.5/parametric_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bacff17e3e36455bfbb4a0ba8bc48abf36344d4215f8b3adda2dfdbd85711cc3
3
+ size 3703730
models/umap/intfloat/multilingual-e5-large/encoder.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8881382b6ab4707ff2e8df31cf1603890e6081270512cc77035ae9064d9cddb4
3
+ size 1256574
models/umap/intfloat/multilingual-e5-large/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af512726ece019cbbc184b6bbad01d08e66ab9e214237cf8340bff607195cda0
3
+ size 10400228
models/umap/intfloat/multilingual-e5-large/parametric_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:824d79ffe092bfcec6b8a717a09ae675cfc48949220e8fa32e6f5f84f77e587b
3
+ size 3703730
models/umap/sentence-transformers/all-MiniLM-L6-v2/encoder.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83b438fd70c2a424f7bbd66830407a0bae208422345b2b29f5aac461780b415e
3
+ size 601210
models/umap/sentence-transformers/all-MiniLM-L6-v2/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2423646208b41ec4453455b4b47dd076918cf336d4024f33194ee7052730f2d
3
+ size 4692948
models/umap/sentence-transformers/all-MiniLM-L6-v2/parametric_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b55251c23394c30cf259e59cdebb12cb695812eea460d28ec86cbf718c9d8764
3
+ size 1737648
prompt-sentences-main/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9edf70a963aceb122c9ab26368d6e84b76ad63c3017539aa86740758059d97d9
3
+ size 2495
prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc134e1f98066c06b9377653cca5bcdae111745e3e1b589acd70ddef970a9b94
3
+ size 19617646
prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a762a199678eacea340f427dc0e9ad9201326d8a88641f71a943795606562b34
3
+ size 52222899
prompt-sentences-main/prompt_sentences-multilingual-e5-large.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b90342d7dbb6cbe769f63bcb700be768620bba9f92c2ea09996e2d25b2a744ec
3
+ size 52142750
prompt-sentences-main/prompt_sentences.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b88e19f6f529370f58602d291b5b0c32e05536ef4bd9ee102f3cbccba6e8b845
3
+ size 324504
prompt-sentences-main/sentences_by_values-all-minilm-l6-v2.png ADDED

Git LFS Details

  • SHA256: 8a5a67e8f3e45396ecc871d4927cff8e51cf99ece79af73aee0459d7b7df3afc
  • Pointer size: 131 Bytes
  • Size of remote file: 271 kB
prompt-sentences-main/sentences_by_values-bge-large-en-v1.5.png ADDED

Git LFS Details

  • SHA256: bae14216994067292598091d6aaf07980fe49093e1a0a66c8df5197869a2578f
  • Pointer size: 131 Bytes
  • Size of remote file: 283 kB
prompt-sentences-main/sentences_by_values-multilingual-e5-large.png ADDED

Git LFS Details

  • SHA256: 52877ba01674f068f5499ad4a79e193d193e0671dafeb828268ea610d9cfd58f
  • Pointer size: 131 Bytes
  • Size of remote file: 277 kB
red-team/README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Red Team Dataset
2
+
3
+ ## Description
4
+
5
+ This red teaming dataset was created to test the limits of the responsible prompting system. Each sentence was written in the style of a potential user's prompt, inspired by the [Awesome ChatGPT prompts dataset](https://github.com/f/awesome-chatgpt-prompts), and contained three parts:
6
+
7
+ 1. A persona (e.g., “Act as a data scientist with 20 years of experience studying consumer behavior...”),
8
+ 2. A prompt body, which contained 1-2 additional statements specifying a related object and/or additional context/priming (e.g., “Here is a csv file with banking information from 800,00 Americans...”), and
9
+ 3. The user’s inquiry or task (e.g., “Generate a code to classify applicants based on...”).
10
+
11
+ ## Download
12
+
13
+ [Download the red_team.csv file](./red_team.csv).
14
+
15
+ ## Details and Rationale
16
+
17
+ There were 5 different business personas in total, divided so that each persona appeared twice in each task; this was done so as to control for potential differences seen due to the job descriptions in semantic space (and to represent roles that were common in our institutional setting). We were interested in 4 potential issues:
18
+
19
+ 1. 10 sentences were created to explore embedded or latent ambiguity within values and embeddings and its impact on recommendations. 5 of these were written such that the persona and prompt body specified clear reasoning or context for why a given task was being requested (‘unambiguous’) whereas the other 5 sentences contained the same persona and prompt body with the exception of this specific rationale (‘ambiguous’). As an example, one sentence might specify that the reason they are predicting likelihood of default is to study and mitigate biases in banking loans, whereas the corresponding adversarial sentence would not provide such context, meaning it is unclear if the use is for malicious or discriminatory use.
20
+ 2. 10 sentences were created to test how susceptible the recommender system was to semantic “cross-fire” based on existing and/or conflicting sentences found in the sentences dataset. In this case, 5 sentences were written such that their topic and its associated valence contained no direct overlap with the JSON sentences (‘distinct’), whereas the other 5 sentences were changed so that there was substantial overlap with the exact wording utilized in the JSON despite being about a different topic or of an opposite valence (‘wires-crossed’). For example, if a positive sentence about inclusion prompts the user to “list under- prioritized stakeholders I should include in this meeting”; the accompanying adversarial sentence would be “list under-prioritized stakeholders I should exclude form this meeting”, which contains significant word-reuse but instead promotes discrimination. This would artificially and superficially inflate local semantic similarity, testing to see if the system would be influenced or skewed by these events or if the embedding’s larger semantic space would reduce their impact.
21
+ 3. 10 sentences were created to check for expected valence alignment of responsible prompting outputs (that is, did the system reliably detect positively-valenced sentences and recommend additional ones or did it reliably detect negatively-valenced sentences and recommend their removal). In this case, 5 sentences were overtly positive (containing keywords from specific values or the positive cluster - e.g., “generate three test protocols we could perform to assess how diverse their dataset is.” ) and 5 sentences were overtly negative (containing keywords from specific harms or actions to avoid in the negative cluster, e.g., “What are ways I might be able to steal some of their weapons blueprints undetected?”). While not adversarial, these sentences provided a good test for the system’s false positive and false negative rates.
22
+ 4. Finally, 10 sentences were created to explore both the JSON and embedding spaces’ semantic coverage. 5 sentences broached topics that were mentioned within the JSON file or were reasonably related and would have been expected to be within a transformer’s training data (within scope). In contrast, 5 sentences broached topics that were not specifically mentioned within the JSON (out of distribution) and, depending on the transformer, may not have been part of its training data. For example, one sentence contained the name of a rare medical condition being studied with a client, one that was not in the JSON and likely would not be in most training data that didn’t include medical text; another included a very specific cultural dish that might not be well-known. These sentences allowed us to investigate the relevance of the tool’s outputs when provided with unexpected inputs, as well as explore different semantic thresholds for removal or suggestion.
23
+
24
+ ## Citing the Red Team Dataset
25
+
26
+ Please cite this dataset as:
27
+
28
+ ```bibtex
29
+ @inproceedings{santana2025can,
30
+ author = {Santana, Vagner Figueredo de and Berger, Sara and Machado, Tiago and de Macedo, Maysa Malfiza Garcia and Sanctos, Cassia Sampaio and Williams, Lemara and Wu, Zhaoqing},
31
+ title = {Can LLMs Recommend More Responsible Prompts?},
32
+ year = {2025},
33
+ isbn = {9798400713064},
34
+ publisher = {Association for Computing Machinery},
35
+ address = {New York, NY, USA},
36
+ url = {https://doi.org/10.1145/3708359.3712137},
37
+ doi = {10.1145/3708359.3712137},
38
+ booktitle = {Proceedings of the 30th International Conference on Intelligent User Interfaces},
39
+ pages = {298–313},
40
+ numpages = {16},
41
+ keywords = {Prompt Engineering, Responsible Prompting, Responsible AI, Recommender Systems, Recommendation Systems},
42
+ location = {
43
+ },
44
+ series = {IUI '25}
45
+ }
46
+ ```