#!/usr/bin/env python # coding: utf-8 # Copyright 2021, IBM Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Python lib to recommend prompts. """ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado" __copyright__ = "IBM Corporation 2024" __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"] __license__ = "Apache 2.0" __version__ = "0.0.1" import requests import json import math import re import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity import os from sentence_transformers import SentenceTransformer def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json', existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'): """ Function that receives a default json file with empty embeddings and checks whether there is a partially populated json file. Args: json_file_path: Path to json default file with empty embeddings. existing_json_populated_file_path: Path to partially populated json file. Returns: A json. Raises: Exception when json file can't be loaded. """ json_file = json_file_path if(os.path.isfile(existing_json_populated_file_path)): json_file = existing_json_populated_file_path prompt_json = json.load(open(json_file)) return prompt_json def get_embedding_func(inference = 'huggingface', **kwargs): if inference == 'local': if 'model_id' not in kwargs: raise TypeError("Missing required argument: model_id") model = SentenceTransformer(kwargs['model_id']) def embedding_fn(texts): return model.encode(texts).tolist() elif inference == 'huggingface': if 'api_url' not in kwargs: raise TypeError("Missing required argument: api_url") if 'headers' not in kwargs: raise TypeError("Missing required argument: headers") def embedding_fn(texts): response = requests.post(kwargs['api_url'], headers=kwargs['headers'], json={"inputs": texts, "options":{"wait_for_model":True}}) return response.json() else: raise ValueError(f"Inference type {inference} is not supported. Please choose one of ['local', 'huggingface'].") return embedding_fn def split_into_sentences(prompt): """ Function that splits the input text into sentences based on punctuation (.!?). The regular expression pattern '(?<=[.!?]) +' ensures that we split after a sentence-ending punctuation followed by one or more spaces. Args: prompt: The entered prompt text. Returns: A list of extracted sentences. Raises: Nothing. """ sentences = re.split(r'(?<=[.!?]) +', prompt) return sentences def get_distance(embedding1, embedding2): """ Function that returns euclidean distance between two embeddings. Args: embedding1: first embedding. embedding2: second embedding. Returns: The euclidean distance value. Raises: Nothing. """ total = 0 if(len(embedding1) != len(embedding2)): return math.inf for i, obj in enumerate(embedding1): total += math.pow(embedding2[0][i] - embedding1[0][i], 2) return(math.sqrt(total)) def sort_by_similarity(e): """ Function that sorts by similarity. Args: e: Returns: The sorted similarity value. Raises: Nothing. """ return e['similarity'] def recommend_prompt( prompt, prompt_json, embedding_fn = None, add_lower_threshold = 0.3, add_upper_threshold = 0.5, remove_lower_threshold = 0.1, remove_upper_threshold = 0.5, umap_model = None ): """ Function that recommends prompts additions or removals. Args: prompt: The entered prompt text. prompt_json: Json file populated with embeddings. embedding_fn: Embedding function to convert prompt sentences into embeddings. If None, uses all-MiniLM-L6-v2 run locally. add_lower_threshold: Lower threshold for sentence addition, the default value is 0.3. add_upper_threshold: Upper threshold for sentence addition, the default value is 0.5. remove_lower_threshold: Lower threshold for sentence removal, the default value is 0.3. remove_upper_threshold: Upper threshold for sentence removal, the default value is 0.5. umap_model: Umap model used for visualization. If None, the projected embeddings of input sentences will not be returned. Returns: Prompt values to add or remove. Raises: Nothing. """ if embedding_fn is None: # Use all-MiniLM-L6-v2 locally by default embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') # Output initialization out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} input_items, items_to_add, items_to_remove = [], [], [] # Spliting prompt into sentences input_sentences = split_into_sentences(prompt) # TODO: Request embeddings for input an d store in a input_embeddingS # Recommendation of values to add to the current prompt # Using only the last sentence for the add recommendation input_embedding = embedding_fn(input_sentences[-1]) input_embedding = np.array(input_embedding) sentence_embeddings = np.array( [v['centroid'] for v in prompt_json['positive_values']] ) similarities_positive_sent = cosine_similarity(np.expand_dims(input_embedding, axis=0), sentence_embeddings)[0, :] for value_idx, v in enumerate(prompt_json['positive_values']): # Dealing with values without prompts and makinig sure they have the same dimensions if(len(v['centroid']) != len(input_embedding)): continue if(similarities_positive_sent[value_idx] < add_lower_threshold): continue value_sents_similarity = cosine_similarity( np.expand_dims(input_embedding, axis=0), np.array([p['embedding'] for p in v['prompts']]) )[0, :] closer_prompt_idxs = np.nonzero((add_lower_threshold < value_sents_similarity) & (value_sents_similarity < add_upper_threshold))[0] for idx in closer_prompt_idxs: items_to_add.append({ 'value': v['label'], 'prompt': v['prompts'][idx]['text'], 'similarity': value_sents_similarity[idx], 'x': v['prompts'][idx]['x'], 'y': v['prompts'][idx]['y'] }) out['add'] = items_to_add inp_sentence_embeddings = np.array([embedding_fn(sent) for sent in input_sentences]) pairwise_similarities = cosine_similarity( inp_sentence_embeddings, np.array([v['centroid'] for v in prompt_json['negative_values']]) ) # Recommendation of values to remove from the current prompt for sent_idx, sentence in enumerate(input_sentences): input_embedding = inp_sentence_embeddings[sent_idx] if umap_model: # Obtaining XY coords for input sentences from a parametric UMAP model if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0)) input_items.append({ 'sentence': sentence, 'x': str(embeddings_umap[0][0]), 'y': str(embeddings_umap[0][1]) }) for value_idx, v in enumerate(prompt_json['negative_values']): # Dealing with values without prompts and making sure they have the same dimensions if(len(v['centroid']) != len(input_embedding)): continue if(pairwise_similarities[sent_idx][value_idx] < remove_lower_threshold): continue # A more restrict threshold is used here to prevent false positives # The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts # So, yes, we want to recommend the removal of something adversarial we've found value_sents_similarity = cosine_similarity( np.expand_dims(input_embedding, axis=0), np.array([p['embedding'] for p in v['prompts']]) )[0, :] closer_prompt_idxs = np.nonzero(value_sents_similarity > remove_upper_threshold)[0] for idx in closer_prompt_idxs: items_to_remove.append({ 'value': v['label'], 'sentence': sentence, 'sentence_index': sent_idx, 'closest_harmful_sentence': v['prompts'][idx]['text'], 'similarity': value_sents_similarity[idx], 'x': v['prompts'][idx]['x'], 'y': v['prompts'][idx]['y'] }) out['remove'] = items_to_remove out['input'] = input_items out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) values_map = {} for item in out['add'][:]: if(item['value'] in values_map): out['add'].remove(item) else: values_map[item['value']] = item['similarity'] out['add'] = out['add'][0:5] out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) values_map = {} for item in out['remove'][:]: if(item['value'] in values_map): out['remove'].remove(item) else: values_map[item['value']] = item['similarity'] out['remove'] = out['remove'][0:5] return out def get_thresholds( prompts, prompt_json, embedding_fn = None, ): """ Function that recommends thresholds given an array of prompts. Args: prompts: The array with samples of prompts to be used in the system. prompt_json: Sentences to be forwarded to the recommendation endpoint. embedding_fn: Embedding function to convert prompt sentences into embeddings. If None, uses all-MiniLM-L6-v2 run locally. Returns: A map with thresholds for the sample prompts and the informed model. Raises: Nothing. """ if embedding_fn is None: embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') add_similarities = [] remove_similarities = [] for p_id, p in enumerate(prompts): out = recommend_prompt(p, prompt_json, embedding_fn, 0, 1, 0, 0, None) # Wider possible range for r in out['add']: add_similarities.append(r['similarity']) for r in out['remove']: remove_similarities.append(r['similarity']) add_similarities_df = pd.DataFrame({'similarity': add_similarities}) remove_similarities_df = pd.DataFrame({'similarity': remove_similarities}) thresholds = {} thresholds['add_lower_threshold'] = round(add_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) thresholds['add_higher_threshold'] = round(add_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) thresholds['remove_lower_threshold'] = round(remove_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) thresholds['remove_higher_threshold'] = round(remove_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) return thresholds