Spaces:
Running
on
Zero
Running
on
Zero
Changes to be committed:
Browse files
app.py
CHANGED
@@ -1,53 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import traceback
|
4 |
import torch
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import shutil
|
7 |
import spaces
|
8 |
|
9 |
-
# Import configuration
|
10 |
try:
|
11 |
from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
|
12 |
except ImportError:
|
13 |
-
# Fallback configuration if config.py is not found
|
14 |
MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
|
15 |
LOCAL_MODEL_PATH = "./chatterbox_model_files"
|
16 |
MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]
|
17 |
|
18 |
-
# Try importing chatterbox with better error handling
|
19 |
try:
|
20 |
from chatterbox.tts import ChatterboxTTS
|
21 |
chatterbox_available = True
|
22 |
print("Chatterbox TTS imported successfully")
|
23 |
-
|
24 |
-
# Inspect the ChatterboxTTS class to understand its API
|
25 |
import inspect
|
26 |
print(f"ChatterboxTTS methods: {[method for method in dir(ChatterboxTTS) if not method.startswith('_')]}")
|
27 |
-
|
28 |
-
# Check constructor signature
|
29 |
try:
|
30 |
sig = inspect.signature(ChatterboxTTS.__init__)
|
31 |
print(f"ChatterboxTTS.__init__ signature: {sig}")
|
32 |
except:
|
33 |
pass
|
34 |
-
|
35 |
-
# Check from_local signature if it exists
|
36 |
if hasattr(ChatterboxTTS, 'from_local'):
|
37 |
try:
|
38 |
sig = inspect.signature(ChatterboxTTS.from_local)
|
39 |
print(f"ChatterboxTTS.from_local signature: {sig}")
|
40 |
except:
|
41 |
pass
|
42 |
-
|
43 |
-
# Check from_pretrained signature if it exists
|
44 |
if hasattr(ChatterboxTTS, 'from_pretrained'):
|
45 |
try:
|
46 |
sig = inspect.signature(ChatterboxTTS.from_pretrained)
|
47 |
print(f"ChatterboxTTS.from_pretrained signature: {sig}")
|
48 |
except:
|
49 |
pass
|
50 |
-
|
51 |
except ImportError as e:
|
52 |
print(f"Failed to import ChatterboxTTS: {e}")
|
53 |
print("Trying alternative import...")
|
@@ -60,16 +53,11 @@ except ImportError as e:
|
|
60 |
print(f"Alternative import also failed: {e2}")
|
61 |
chatterbox_available = False
|
62 |
|
63 |
-
# --- Global Model Variable ---
|
64 |
model = None
|
65 |
|
66 |
def download_model_files():
|
67 |
-
"""Download model files from Hugging Face Hub if they don't exist locally"""
|
68 |
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
|
69 |
-
|
70 |
-
# Create model directory if it doesn't exist
|
71 |
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
72 |
-
|
73 |
for filename in MODEL_FILES:
|
74 |
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
|
75 |
if not os.path.exists(local_path):
|
@@ -79,9 +67,8 @@ def download_model_files():
|
|
79 |
repo_id=MODEL_REPO_ID,
|
80 |
filename=filename,
|
81 |
cache_dir="./cache",
|
82 |
-
force_download=False
|
83 |
)
|
84 |
-
# Copy to our local model path
|
85 |
shutil.copy2(downloaded_path, local_path)
|
86 |
print(f"✓ Downloaded and copied {filename}")
|
87 |
except Exception as e:
|
@@ -89,10 +76,8 @@ def download_model_files():
|
|
89 |
raise e
|
90 |
else:
|
91 |
print(f"✓ {filename} already exists locally")
|
92 |
-
|
93 |
print("All model files are ready!")
|
94 |
|
95 |
-
# --- Load the Model ---
|
96 |
if chatterbox_available:
|
97 |
print("Downloading model files from Hugging Face Hub...")
|
98 |
try:
|
@@ -100,7 +85,7 @@ if chatterbox_available:
|
|
100 |
except Exception as e:
|
101 |
print(f"ERROR: Failed to download model files: {e}")
|
102 |
print("Model loading will fail without these files.")
|
103 |
-
|
104 |
print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
|
105 |
if not os.path.exists(LOCAL_MODEL_PATH):
|
106 |
print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
|
@@ -108,83 +93,62 @@ if chatterbox_available:
|
|
108 |
else:
|
109 |
print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
|
110 |
try:
|
111 |
-
# Load the model from the specified local directory
|
112 |
-
# Set device to CPU or CUDA if available
|
113 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
114 |
print(f"Using device: {device}")
|
115 |
-
|
116 |
-
# Based on API inspection:
|
117 |
-
# ChatterboxTTS.from_local signature: (ckpt_dir, device) -> 'ChatterboxTTS'
|
118 |
-
# ChatterboxTTS.from_pretrained signature: (device) -> 'ChatterboxTTS'
|
119 |
-
|
120 |
try:
|
121 |
-
# Method 1: Use from_local with correct signature (ckpt_dir, device)
|
122 |
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
|
123 |
print("Chatterbox model loaded successfully using from_local method.")
|
124 |
except Exception as e1:
|
125 |
print(f"from_local attempt failed: {e1}")
|
126 |
try:
|
127 |
-
# Method 2: Use from_pretrained with device only
|
128 |
model = ChatterboxTTS.from_pretrained(device)
|
129 |
print("Chatterbox model loaded successfully with from_pretrained.")
|
130 |
except Exception as e2:
|
131 |
print(f"from_pretrained failed: {e2}")
|
132 |
try:
|
133 |
-
# Method 3: Manual loading with correct constructor signature
|
134 |
-
# ChatterboxTTS.__init__ signature: (self, t3, s3gen, ve, tokenizer, device, conds=None)
|
135 |
import pathlib
|
136 |
import json
|
137 |
-
|
138 |
model_path = pathlib.Path(LOCAL_MODEL_PATH)
|
139 |
-
|
140 |
print(f"Manual loading with correct constructor signature...")
|
141 |
-
|
142 |
-
# Load all components
|
143 |
s3gen_path = model_path / "s3gen.pt"
|
144 |
ve_path = model_path / "ve.pt"
|
145 |
tokenizer_path = model_path / "tokenizer.json"
|
146 |
t3_cfg_path = model_path / "t3_cfg.pt"
|
147 |
-
|
148 |
print(f" Loading s3gen from: {s3gen_path}")
|
149 |
s3gen = torch.load(s3gen_path, map_location=torch.device('cpu'))
|
150 |
-
|
151 |
print(f" Loading ve from: {ve_path}")
|
152 |
ve = torch.load(ve_path, map_location=torch.device('cpu'))
|
153 |
-
|
154 |
print(f" Loading t3_cfg from: {t3_cfg_path}")
|
155 |
t3_cfg = torch.load(t3_cfg_path, map_location=torch.device('cpu'))
|
156 |
-
|
157 |
print(f" Loading tokenizer from: {tokenizer_path}")
|
158 |
with open(tokenizer_path, 'r') as f:
|
159 |
tokenizer_data = json.load(f)
|
160 |
-
|
161 |
-
# The tokenizer might need to be instantiated as a proper object
|
162 |
-
# Let's try to use the ChatterboxTTS internal tokenizer class
|
163 |
try:
|
164 |
from chatterbox.models.tokenizers.tokenizer import EnTokenizer
|
165 |
tokenizer = EnTokenizer.from_dict(tokenizer_data)
|
166 |
print(" Created EnTokenizer from JSON data")
|
167 |
except Exception as tok_error:
|
168 |
print(f" Could not create EnTokenizer: {tok_error}")
|
169 |
-
tokenizer = tokenizer_data
|
170 |
-
|
171 |
print(" Creating ChatterboxTTS instance with correct signature...")
|
172 |
-
|
173 |
-
# Constructor signature: (self, t3, s3gen, ve, tokenizer, device, conds=None)
|
174 |
model = ChatterboxTTS(
|
175 |
t3=t3_cfg,
|
176 |
-
s3gen=s3gen,
|
177 |
ve=ve,
|
178 |
tokenizer=tokenizer,
|
179 |
device=device
|
180 |
)
|
181 |
print("Chatterbox model loaded successfully with manual constructor.")
|
182 |
-
|
183 |
except Exception as e3:
|
184 |
print(f"Manual loading failed: {e3}")
|
185 |
print(f"Detailed error: {str(e3)}")
|
186 |
-
|
187 |
-
# Last resort: try with different parameter orders
|
188 |
try:
|
189 |
print("Trying alternative parameter order...")
|
190 |
model = ChatterboxTTS(
|
@@ -194,12 +158,12 @@ if chatterbox_available:
|
|
194 |
except Exception as e4:
|
195 |
print(f"Alternative parameter order failed: {e4}")
|
196 |
raise e3
|
197 |
-
|
198 |
except Exception as e:
|
199 |
print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
|
200 |
print("Detailed error trace:")
|
201 |
-
traceback.print_exc()
|
202 |
-
model = None
|
203 |
else:
|
204 |
print("ERROR: Chatterbox TTS library not available")
|
205 |
|
@@ -223,116 +187,86 @@ def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=
|
|
223 |
print(f" Random Seed: {random_seed}")
|
224 |
print(f" Temperature: {temperature}")
|
225 |
|
226 |
-
# Set random seed if specified
|
227 |
if random_seed > 0:
|
228 |
import torch
|
229 |
torch.manual_seed(random_seed)
|
230 |
if torch.cuda.is_available():
|
231 |
torch.cuda.manual_seed(random_seed)
|
232 |
|
233 |
-
# Use the correct ChatterboxTTS generate method signature with advanced parameters
|
234 |
output_wav_data = model.generate(
|
235 |
text=text_to_speak,
|
236 |
audio_prompt_path=reference_audio_path,
|
237 |
-
exaggeration=exaggeration,
|
238 |
-
cfg_weight=cfg_pace,
|
239 |
-
temperature=temperature
|
240 |
)
|
241 |
|
242 |
-
# Get the sample rate from the model
|
243 |
try:
|
244 |
-
sample_rate = model.sr
|
245 |
except:
|
246 |
-
sample_rate = 24000
|
247 |
|
248 |
print(f"Audio generated successfully. Output data type: {type(output_wav_data)}, Sample rate: {sample_rate}")
|
249 |
-
|
250 |
-
# Handle different output formats
|
251 |
if isinstance(output_wav_data, str):
|
252 |
-
# If it's a file path, return the path
|
253 |
return output_wav_data, "Success: Audio generated successfully!"
|
254 |
else:
|
255 |
-
# If it's numpy array or tensor, return with sample rate
|
256 |
import numpy as np
|
257 |
if hasattr(output_wav_data, 'cpu'):
|
258 |
-
# Convert tensor to numpy if needed
|
259 |
output_wav_data = output_wav_data.cpu().numpy()
|
260 |
-
|
261 |
-
# Ensure it's the right shape for Gradio (1D array)
|
262 |
if output_wav_data.ndim > 1:
|
263 |
output_wav_data = output_wav_data.squeeze()
|
264 |
-
|
265 |
return (sample_rate, output_wav_data), "Success: Audio generated successfully!"
|
266 |
|
267 |
except Exception as e:
|
268 |
print(f"ERROR: Failed during audio generation: {e}")
|
269 |
print("Detailed error trace for audio generation:")
|
270 |
-
traceback.print_exc()
|
271 |
return None, f"Error during audio generation: {str(e)}. Check logs for more details."
|
272 |
|
273 |
-
# --- API Endpoint Function ---
|
274 |
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
275 |
-
"""
|
276 |
-
API version of clone_voice that accepts URL or base64 audio data
|
277 |
-
"""
|
278 |
import requests
|
279 |
import tempfile
|
280 |
import os
|
281 |
import base64
|
282 |
-
|
283 |
-
# Handle different audio input formats
|
284 |
temp_audio_path = None
|
285 |
try:
|
286 |
if reference_audio_url.startswith('data:audio'):
|
287 |
-
# Handle base64 encoded audio
|
288 |
header, encoded = reference_audio_url.split(',', 1)
|
289 |
audio_data = base64.b64decode(encoded)
|
290 |
-
|
291 |
-
# Determine file extension from MIME type
|
292 |
if 'mp3' in header:
|
293 |
ext = '.mp3'
|
294 |
elif 'wav' in header:
|
295 |
ext = '.wav'
|
296 |
else:
|
297 |
-
ext = '.wav'
|
298 |
-
|
299 |
-
# Save to temporary file
|
300 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
301 |
temp_file.write(audio_data)
|
302 |
temp_audio_path = temp_file.name
|
303 |
-
|
304 |
elif reference_audio_url.startswith('http'):
|
305 |
-
# Download audio from URL
|
306 |
response = requests.get(reference_audio_url)
|
307 |
response.raise_for_status()
|
308 |
-
|
309 |
-
# Determine extension from URL or content type
|
310 |
if reference_audio_url.endswith('.mp3'):
|
311 |
ext = '.mp3'
|
312 |
elif reference_audio_url.endswith('.wav'):
|
313 |
ext = '.wav'
|
314 |
else:
|
315 |
-
ext = '.wav'
|
316 |
-
|
317 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
318 |
temp_file.write(response.content)
|
319 |
temp_audio_path = temp_file.name
|
320 |
else:
|
321 |
-
# Assume it's a local file path
|
322 |
temp_audio_path = reference_audio_url
|
323 |
-
|
324 |
-
# Call the main clone_voice function
|
325 |
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
|
326 |
-
|
327 |
-
# Clean up temporary file if we created one
|
328 |
if temp_audio_path and temp_audio_path != reference_audio_url:
|
329 |
try:
|
330 |
os.unlink(temp_audio_path)
|
331 |
except:
|
332 |
pass
|
333 |
-
|
334 |
return audio_output, status
|
335 |
-
|
336 |
except Exception as e:
|
337 |
if temp_audio_path and temp_audio_path != reference_audio_url:
|
338 |
try:
|
@@ -341,160 +275,72 @@ def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pa
|
|
341 |
pass
|
342 |
return None, f"API Error: {str(e)}"
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
with gr.Row():
|
351 |
-
with gr.Column(scale=2):
|
352 |
-
# Main inputs
|
353 |
-
text_input = gr.Textbox(
|
354 |
label="Text to Speak",
|
355 |
placeholder="Enter the text you want the cloned voice to say...",
|
356 |
lines=3
|
357 |
-
)
|
358 |
-
|
359 |
type="filepath",
|
360 |
label="Reference Audio (Upload a short .wav or .mp3 clip)",
|
361 |
sources=["upload", "microphone"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
)
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
cfg_pace = gr.Slider(
|
376 |
-
minimum=0.2,
|
377 |
-
maximum=1.0,
|
378 |
-
value=0.3,
|
379 |
-
step=0.05,
|
380 |
-
label="CFG/Pace",
|
381 |
-
info="Classifier-free guidance weight (affects generation quality and pace)"
|
382 |
-
)
|
383 |
-
|
384 |
-
with gr.Row():
|
385 |
-
random_seed = gr.Number(
|
386 |
-
value=0,
|
387 |
-
label="Random Seed",
|
388 |
-
info="Set to 0 for random results, or use a specific number for reproducible outputs",
|
389 |
-
precision=0
|
390 |
-
)
|
391 |
-
temperature = gr.Slider(
|
392 |
-
minimum=0.05,
|
393 |
-
maximum=2.0,
|
394 |
-
value=0.6,
|
395 |
-
step=0.05,
|
396 |
-
label="Temperature",
|
397 |
-
info="Controls randomness in generation (lower = more consistent, higher = more varied)"
|
398 |
-
)
|
399 |
-
|
400 |
-
# Generate button
|
401 |
-
generate_btn = gr.Button("🎵 Generate Voice Clone", variant="primary", size="lg")
|
402 |
-
|
403 |
-
with gr.Column(scale=1):
|
404 |
-
# Outputs
|
405 |
-
audio_output = gr.Audio(
|
406 |
-
label="Generated Audio",
|
407 |
-
type="numpy",
|
408 |
-
interactive=False
|
409 |
-
)
|
410 |
-
status_output = gr.Textbox(
|
411 |
-
label="Status",
|
412 |
-
interactive=False,
|
413 |
-
lines=2
|
414 |
-
)
|
415 |
-
|
416 |
-
# API Information
|
417 |
-
with gr.Accordion("🔌 API Usage", open=False):
|
418 |
-
gr.Markdown("""
|
419 |
-
### Using this as an API endpoint
|
420 |
-
|
421 |
-
You can use this Hugging Face Space as an API endpoint in your applications:
|
422 |
-
|
423 |
-
**Endpoint URL:** `https://your-username-voice-cloning.hf.space/api/predict`
|
424 |
-
|
425 |
-
**Example Python code:**
|
426 |
-
```python
|
427 |
-
import requests
|
428 |
-
import base64
|
429 |
-
|
430 |
-
# Encode your audio file
|
431 |
-
with open("reference_audio.wav", "rb") as f:
|
432 |
-
audio_data = base64.b64encode(f.read()).decode()
|
433 |
-
audio_url = f"data:audio/wav;base64,{audio_data}"
|
434 |
-
|
435 |
-
# API request
|
436 |
-
response = requests.post(
|
437 |
-
"https://your-username-voice-cloning.hf.space/api/predict",
|
438 |
-
json={
|
439 |
-
"data": [
|
440 |
-
"Hello, this is my cloned voice!", # text
|
441 |
-
audio_url, # reference audio (base64 or URL)
|
442 |
-
0.6, # exaggeration
|
443 |
-
0.3, # cfg_pace
|
444 |
-
0, # random_seed
|
445 |
-
0.6 # temperature
|
446 |
-
]
|
447 |
-
}
|
448 |
-
)
|
449 |
-
```
|
450 |
-
|
451 |
-
**Parameters:**
|
452 |
-
- `text_to_speak`: Text to synthesize
|
453 |
-
- `reference_audio`: Base64 encoded audio or URL
|
454 |
-
- `exaggeration`: Voice emphasis (0.25-1.0, default: 0.6)
|
455 |
-
- `cfg_pace`: Generation guidance (0.2-1.0, default: 0.3)
|
456 |
-
- `random_seed`: Reproducibility seed (0 for random, default: 0)
|
457 |
-
- `temperature`: Generation randomness (0.05-2.0, default: 0.6)
|
458 |
-
""")
|
459 |
-
|
460 |
-
# Examples
|
461 |
-
with gr.Accordion("📝 Examples", open=False):
|
462 |
-
gr.Examples(
|
463 |
-
examples=[
|
464 |
-
["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
|
465 |
-
["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
|
466 |
-
["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
|
467 |
-
],
|
468 |
-
inputs=[text_input, audio_input, exaggeration, cfg_pace, random_seed, temperature],
|
469 |
-
outputs=[audio_output, status_output],
|
470 |
-
fn=clone_voice,
|
471 |
-
cache_examples=False
|
472 |
-
)
|
473 |
-
|
474 |
-
# Connect the generate button
|
475 |
-
generate_btn.click(
|
476 |
-
fn=clone_voice,
|
477 |
-
inputs=[text_input, audio_input, exaggeration, cfg_pace, random_seed, temperature],
|
478 |
-
outputs=[audio_output, status_output],
|
479 |
-
api_name="clone_voice" # This enables API access
|
480 |
)
|
481 |
-
|
482 |
-
# --- Launch the Gradio App ---
|
483 |
-
def main():
|
484 |
-
print("Starting Advanced Gradio interface...")
|
485 |
-
# Launch with specific configuration for API access and avoid manifest issues
|
486 |
iface.launch(
|
487 |
-
server_name="0.0.0.0",
|
488 |
-
server_port=7860,
|
489 |
-
show_error=True,
|
490 |
-
quiet=False,
|
491 |
-
favicon_path=None,
|
492 |
-
share=False,
|
493 |
-
auth=None
|
494 |
-
app_kwargs={
|
495 |
-
"docs_url": "/docs", # Enable API docs at /docs
|
496 |
-
"redoc_url": "/redoc" # Enable alternative docs at /redoc
|
497 |
-
}
|
498 |
)
|
499 |
|
500 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import traceback
|
4 |
import torch
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import shutil
|
7 |
import spaces
|
8 |
|
|
|
9 |
try:
|
10 |
from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
|
11 |
except ImportError:
|
|
|
12 |
MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
|
13 |
LOCAL_MODEL_PATH = "./chatterbox_model_files"
|
14 |
MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]
|
15 |
|
|
|
16 |
try:
|
17 |
from chatterbox.tts import ChatterboxTTS
|
18 |
chatterbox_available = True
|
19 |
print("Chatterbox TTS imported successfully")
|
20 |
+
|
|
|
21 |
import inspect
|
22 |
print(f"ChatterboxTTS methods: {[method for method in dir(ChatterboxTTS) if not method.startswith('_')]}")
|
23 |
+
|
|
|
24 |
try:
|
25 |
sig = inspect.signature(ChatterboxTTS.__init__)
|
26 |
print(f"ChatterboxTTS.__init__ signature: {sig}")
|
27 |
except:
|
28 |
pass
|
29 |
+
|
|
|
30 |
if hasattr(ChatterboxTTS, 'from_local'):
|
31 |
try:
|
32 |
sig = inspect.signature(ChatterboxTTS.from_local)
|
33 |
print(f"ChatterboxTTS.from_local signature: {sig}")
|
34 |
except:
|
35 |
pass
|
36 |
+
|
|
|
37 |
if hasattr(ChatterboxTTS, 'from_pretrained'):
|
38 |
try:
|
39 |
sig = inspect.signature(ChatterboxTTS.from_pretrained)
|
40 |
print(f"ChatterboxTTS.from_pretrained signature: {sig}")
|
41 |
except:
|
42 |
pass
|
43 |
+
|
44 |
except ImportError as e:
|
45 |
print(f"Failed to import ChatterboxTTS: {e}")
|
46 |
print("Trying alternative import...")
|
|
|
53 |
print(f"Alternative import also failed: {e2}")
|
54 |
chatterbox_available = False
|
55 |
|
|
|
56 |
model = None
|
57 |
|
58 |
def download_model_files():
|
|
|
59 |
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
|
|
|
|
|
60 |
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
|
|
61 |
for filename in MODEL_FILES:
|
62 |
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
|
63 |
if not os.path.exists(local_path):
|
|
|
67 |
repo_id=MODEL_REPO_ID,
|
68 |
filename=filename,
|
69 |
cache_dir="./cache",
|
70 |
+
force_download=False
|
71 |
)
|
|
|
72 |
shutil.copy2(downloaded_path, local_path)
|
73 |
print(f"✓ Downloaded and copied {filename}")
|
74 |
except Exception as e:
|
|
|
76 |
raise e
|
77 |
else:
|
78 |
print(f"✓ {filename} already exists locally")
|
|
|
79 |
print("All model files are ready!")
|
80 |
|
|
|
81 |
if chatterbox_available:
|
82 |
print("Downloading model files from Hugging Face Hub...")
|
83 |
try:
|
|
|
85 |
except Exception as e:
|
86 |
print(f"ERROR: Failed to download model files: {e}")
|
87 |
print("Model loading will fail without these files.")
|
88 |
+
|
89 |
print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
|
90 |
if not os.path.exists(LOCAL_MODEL_PATH):
|
91 |
print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
|
|
|
93 |
else:
|
94 |
print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
|
95 |
try:
|
|
|
|
|
96 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
97 |
print(f"Using device: {device}")
|
98 |
+
|
|
|
|
|
|
|
|
|
99 |
try:
|
|
|
100 |
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
|
101 |
print("Chatterbox model loaded successfully using from_local method.")
|
102 |
except Exception as e1:
|
103 |
print(f"from_local attempt failed: {e1}")
|
104 |
try:
|
|
|
105 |
model = ChatterboxTTS.from_pretrained(device)
|
106 |
print("Chatterbox model loaded successfully with from_pretrained.")
|
107 |
except Exception as e2:
|
108 |
print(f"from_pretrained failed: {e2}")
|
109 |
try:
|
|
|
|
|
110 |
import pathlib
|
111 |
import json
|
112 |
+
|
113 |
model_path = pathlib.Path(LOCAL_MODEL_PATH)
|
|
|
114 |
print(f"Manual loading with correct constructor signature...")
|
115 |
+
|
|
|
116 |
s3gen_path = model_path / "s3gen.pt"
|
117 |
ve_path = model_path / "ve.pt"
|
118 |
tokenizer_path = model_path / "tokenizer.json"
|
119 |
t3_cfg_path = model_path / "t3_cfg.pt"
|
120 |
+
|
121 |
print(f" Loading s3gen from: {s3gen_path}")
|
122 |
s3gen = torch.load(s3gen_path, map_location=torch.device('cpu'))
|
|
|
123 |
print(f" Loading ve from: {ve_path}")
|
124 |
ve = torch.load(ve_path, map_location=torch.device('cpu'))
|
|
|
125 |
print(f" Loading t3_cfg from: {t3_cfg_path}")
|
126 |
t3_cfg = torch.load(t3_cfg_path, map_location=torch.device('cpu'))
|
|
|
127 |
print(f" Loading tokenizer from: {tokenizer_path}")
|
128 |
with open(tokenizer_path, 'r') as f:
|
129 |
tokenizer_data = json.load(f)
|
130 |
+
|
|
|
|
|
131 |
try:
|
132 |
from chatterbox.models.tokenizers.tokenizer import EnTokenizer
|
133 |
tokenizer = EnTokenizer.from_dict(tokenizer_data)
|
134 |
print(" Created EnTokenizer from JSON data")
|
135 |
except Exception as tok_error:
|
136 |
print(f" Could not create EnTokenizer: {tok_error}")
|
137 |
+
tokenizer = tokenizer_data
|
138 |
+
|
139 |
print(" Creating ChatterboxTTS instance with correct signature...")
|
|
|
|
|
140 |
model = ChatterboxTTS(
|
141 |
t3=t3_cfg,
|
142 |
+
s3gen=s3gen,
|
143 |
ve=ve,
|
144 |
tokenizer=tokenizer,
|
145 |
device=device
|
146 |
)
|
147 |
print("Chatterbox model loaded successfully with manual constructor.")
|
148 |
+
|
149 |
except Exception as e3:
|
150 |
print(f"Manual loading failed: {e3}")
|
151 |
print(f"Detailed error: {str(e3)}")
|
|
|
|
|
152 |
try:
|
153 |
print("Trying alternative parameter order...")
|
154 |
model = ChatterboxTTS(
|
|
|
158 |
except Exception as e4:
|
159 |
print(f"Alternative parameter order failed: {e4}")
|
160 |
raise e3
|
161 |
+
|
162 |
except Exception as e:
|
163 |
print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
|
164 |
print("Detailed error trace:")
|
165 |
+
traceback.print_exc()
|
166 |
+
model = None
|
167 |
else:
|
168 |
print("ERROR: Chatterbox TTS library not available")
|
169 |
|
|
|
187 |
print(f" Random Seed: {random_seed}")
|
188 |
print(f" Temperature: {temperature}")
|
189 |
|
|
|
190 |
if random_seed > 0:
|
191 |
import torch
|
192 |
torch.manual_seed(random_seed)
|
193 |
if torch.cuda.is_available():
|
194 |
torch.cuda.manual_seed(random_seed)
|
195 |
|
|
|
196 |
output_wav_data = model.generate(
|
197 |
text=text_to_speak,
|
198 |
audio_prompt_path=reference_audio_path,
|
199 |
+
exaggeration=exaggeration,
|
200 |
+
cfg_weight=cfg_pace,
|
201 |
+
temperature=temperature
|
202 |
)
|
203 |
|
|
|
204 |
try:
|
205 |
+
sample_rate = model.sr
|
206 |
except:
|
207 |
+
sample_rate = 24000
|
208 |
|
209 |
print(f"Audio generated successfully. Output data type: {type(output_wav_data)}, Sample rate: {sample_rate}")
|
210 |
+
|
|
|
211 |
if isinstance(output_wav_data, str):
|
|
|
212 |
return output_wav_data, "Success: Audio generated successfully!"
|
213 |
else:
|
|
|
214 |
import numpy as np
|
215 |
if hasattr(output_wav_data, 'cpu'):
|
|
|
216 |
output_wav_data = output_wav_data.cpu().numpy()
|
|
|
|
|
217 |
if output_wav_data.ndim > 1:
|
218 |
output_wav_data = output_wav_data.squeeze()
|
|
|
219 |
return (sample_rate, output_wav_data), "Success: Audio generated successfully!"
|
220 |
|
221 |
except Exception as e:
|
222 |
print(f"ERROR: Failed during audio generation: {e}")
|
223 |
print("Detailed error trace for audio generation:")
|
224 |
+
traceback.print_exc()
|
225 |
return None, f"Error during audio generation: {str(e)}. Check logs for more details."
|
226 |
|
|
|
227 |
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
|
|
|
|
|
|
228 |
import requests
|
229 |
import tempfile
|
230 |
import os
|
231 |
import base64
|
232 |
+
|
|
|
233 |
temp_audio_path = None
|
234 |
try:
|
235 |
if reference_audio_url.startswith('data:audio'):
|
|
|
236 |
header, encoded = reference_audio_url.split(',', 1)
|
237 |
audio_data = base64.b64decode(encoded)
|
|
|
|
|
238 |
if 'mp3' in header:
|
239 |
ext = '.mp3'
|
240 |
elif 'wav' in header:
|
241 |
ext = '.wav'
|
242 |
else:
|
243 |
+
ext = '.wav'
|
|
|
|
|
244 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
245 |
temp_file.write(audio_data)
|
246 |
temp_audio_path = temp_file.name
|
|
|
247 |
elif reference_audio_url.startswith('http'):
|
|
|
248 |
response = requests.get(reference_audio_url)
|
249 |
response.raise_for_status()
|
|
|
|
|
250 |
if reference_audio_url.endswith('.mp3'):
|
251 |
ext = '.mp3'
|
252 |
elif reference_audio_url.endswith('.wav'):
|
253 |
ext = '.wav'
|
254 |
else:
|
255 |
+
ext = '.wav'
|
|
|
256 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
257 |
temp_file.write(response.content)
|
258 |
temp_audio_path = temp_file.name
|
259 |
else:
|
|
|
260 |
temp_audio_path = reference_audio_url
|
261 |
+
|
|
|
262 |
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
|
263 |
+
|
|
|
264 |
if temp_audio_path and temp_audio_path != reference_audio_url:
|
265 |
try:
|
266 |
os.unlink(temp_audio_path)
|
267 |
except:
|
268 |
pass
|
|
|
269 |
return audio_output, status
|
|
|
270 |
except Exception as e:
|
271 |
if temp_audio_path and temp_audio_path != reference_audio_url:
|
272 |
try:
|
|
|
275 |
pass
|
276 |
return None, f"API Error: {str(e)}"
|
277 |
|
278 |
+
def main():
|
279 |
+
print("Starting Advanced Gradio interface...")
|
280 |
+
iface = gr.Interface(
|
281 |
+
fn=clone_voice_api,
|
282 |
+
inputs=[
|
283 |
+
gr.Textbox(
|
|
|
|
|
|
|
|
|
284 |
label="Text to Speak",
|
285 |
placeholder="Enter the text you want the cloned voice to say...",
|
286 |
lines=3
|
287 |
+
),
|
288 |
+
gr.Audio(
|
289 |
type="filepath",
|
290 |
label="Reference Audio (Upload a short .wav or .mp3 clip)",
|
291 |
sources=["upload", "microphone"]
|
292 |
+
),
|
293 |
+
gr.Slider(
|
294 |
+
minimum=0.25,
|
295 |
+
maximum=1.0,
|
296 |
+
value=0.6,
|
297 |
+
step=0.05,
|
298 |
+
label="Exaggeration",
|
299 |
+
info="Controls voice characteristic emphasis (0.5 = neutral, higher = more exaggerated)"
|
300 |
+
),
|
301 |
+
gr.Slider(
|
302 |
+
minimum=0.2,
|
303 |
+
maximum=1.0,
|
304 |
+
value=0.3,
|
305 |
+
step=0.05,
|
306 |
+
label="CFG/Pace",
|
307 |
+
info="Classifier-free guidance weight (affects generation quality and pace)"
|
308 |
+
),
|
309 |
+
gr.Number(
|
310 |
+
value=0,
|
311 |
+
label="Random Seed",
|
312 |
+
info="Set to 0 for random results, or use a specific number for reproducible outputs",
|
313 |
+
precision=0
|
314 |
+
),
|
315 |
+
gr.Slider(
|
316 |
+
minimum=0.05,
|
317 |
+
maximum=2.0,
|
318 |
+
value=0.6,
|
319 |
+
step=0.05,
|
320 |
+
label="Temperature",
|
321 |
+
info="Controls randomness in generation (lower = more consistent, higher = more varied)"
|
322 |
)
|
323 |
+
],
|
324 |
+
outputs=[
|
325 |
+
gr.Audio(label="Generated Audio", type="numpy"),
|
326 |
+
gr.Textbox(label="Status", lines=2)
|
327 |
+
],
|
328 |
+
title="🎙️ Advanced Chatterbox Voice Cloning",
|
329 |
+
description="Clone any voice using advanced AI technology with fine-tuned controls.",
|
330 |
+
examples=[
|
331 |
+
["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
|
332 |
+
["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
|
333 |
+
["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
|
334 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
)
|
|
|
|
|
|
|
|
|
|
|
336 |
iface.launch(
|
337 |
+
server_name="0.0.0.0",
|
338 |
+
server_port=7860,
|
339 |
+
show_error=True,
|
340 |
+
quiet=False,
|
341 |
+
favicon_path=None,
|
342 |
+
share=False,
|
343 |
+
auth=None
|
|
|
|
|
|
|
|
|
344 |
)
|
345 |
|
346 |
if __name__ == "__main__":
|