Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import traceback
|
4 |
import torch
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import shutil
|
7 |
import spaces
|
@@ -17,47 +18,109 @@ try:
|
|
17 |
from chatterbox.tts import ChatterboxTTS
|
18 |
chatterbox_available = True
|
19 |
print("Chatterbox TTS imported successfully")
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
print(f"ChatterboxTTS methods: {[method for method in dir(ChatterboxTTS) if not method.startswith('_')]}")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
try:
|
32 |
-
|
33 |
-
print(
|
34 |
-
except:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
try:
|
48 |
-
import
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def download_model_files():
|
|
|
59 |
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
|
60 |
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
|
|
61 |
for filename in MODEL_FILES:
|
62 |
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
|
63 |
if not os.path.exists(local_path):
|
@@ -78,97 +141,19 @@ def download_model_files():
|
|
78 |
print(f"✓ {filename} already exists locally")
|
79 |
print("All model files are ready!")
|
80 |
|
|
|
81 |
if chatterbox_available:
|
82 |
-
print("Downloading model files from Hugging Face Hub...")
|
83 |
try:
|
84 |
download_model_files()
|
|
|
85 |
except Exception as e:
|
86 |
-
print(f"ERROR
|
87 |
-
print("Model loading will fail without these files.")
|
88 |
-
|
89 |
-
print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
|
90 |
-
if not os.path.exists(LOCAL_MODEL_PATH):
|
91 |
-
print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
|
92 |
-
print("Please ensure the model files were downloaded successfully.")
|
93 |
-
else:
|
94 |
-
print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
|
95 |
-
try:
|
96 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
97 |
-
print(f"Using device: {device}")
|
98 |
-
|
99 |
-
try:
|
100 |
-
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
|
101 |
-
print("Chatterbox model loaded successfully using from_local method.")
|
102 |
-
except Exception as e1:
|
103 |
-
print(f"from_local attempt failed: {e1}")
|
104 |
-
try:
|
105 |
-
model = ChatterboxTTS.from_pretrained(device)
|
106 |
-
print("Chatterbox model loaded successfully with from_pretrained.")
|
107 |
-
except Exception as e2:
|
108 |
-
print(f"from_pretrained failed: {e2}")
|
109 |
-
try:
|
110 |
-
import pathlib
|
111 |
-
import json
|
112 |
-
|
113 |
-
model_path = pathlib.Path(LOCAL_MODEL_PATH)
|
114 |
-
print(f"Manual loading with correct constructor signature...")
|
115 |
-
|
116 |
-
s3gen_path = model_path / "s3gen.pt"
|
117 |
-
ve_path = model_path / "ve.pt"
|
118 |
-
tokenizer_path = model_path / "tokenizer.json"
|
119 |
-
t3_cfg_path = model_path / "t3_cfg.pt"
|
120 |
-
|
121 |
-
print(f" Loading s3gen from: {s3gen_path}")
|
122 |
-
s3gen = torch.load(s3gen_path, map_location=torch.device('cpu'))
|
123 |
-
print(f" Loading ve from: {ve_path}")
|
124 |
-
ve = torch.load(ve_path, map_location=torch.device('cpu'))
|
125 |
-
print(f" Loading t3_cfg from: {t3_cfg_path}")
|
126 |
-
t3_cfg = torch.load(t3_cfg_path, map_location=torch.device('cpu'))
|
127 |
-
print(f" Loading tokenizer from: {tokenizer_path}")
|
128 |
-
with open(tokenizer_path, 'r') as f:
|
129 |
-
tokenizer_data = json.load(f)
|
130 |
-
|
131 |
-
try:
|
132 |
-
from chatterbox.models.tokenizers.tokenizer import EnTokenizer
|
133 |
-
tokenizer = EnTokenizer.from_dict(tokenizer_data)
|
134 |
-
print(" Created EnTokenizer from JSON data")
|
135 |
-
except Exception as tok_error:
|
136 |
-
print(f" Could not create EnTokenizer: {tok_error}")
|
137 |
-
tokenizer = tokenizer_data
|
138 |
-
|
139 |
-
print(" Creating ChatterboxTTS instance with correct signature...")
|
140 |
-
model = ChatterboxTTS(
|
141 |
-
t3=t3_cfg,
|
142 |
-
s3gen=s3gen,
|
143 |
-
ve=ve,
|
144 |
-
tokenizer=tokenizer,
|
145 |
-
device=device
|
146 |
-
)
|
147 |
-
print("Chatterbox model loaded successfully with manual constructor.")
|
148 |
-
|
149 |
-
except Exception as e3:
|
150 |
-
print(f"Manual loading failed: {e3}")
|
151 |
-
print(f"Detailed error: {str(e3)}")
|
152 |
-
try:
|
153 |
-
print("Trying alternative parameter order...")
|
154 |
-
model = ChatterboxTTS(
|
155 |
-
s3gen, ve, tokenizer, t3_cfg, device
|
156 |
-
)
|
157 |
-
print("Chatterbox model loaded with alternative parameter order.")
|
158 |
-
except Exception as e4:
|
159 |
-
print(f"Alternative parameter order failed: {e4}")
|
160 |
-
raise e3
|
161 |
-
|
162 |
-
except Exception as e:
|
163 |
-
print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
|
164 |
-
print("Detailed error trace:")
|
165 |
-
traceback.print_exc()
|
166 |
-
model = None
|
167 |
-
else:
|
168 |
-
print("ERROR: Chatterbox TTS library not available")
|
169 |
|
170 |
@spaces.GPU
|
171 |
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
|
|
|
|
|
|
172 |
if not chatterbox_available:
|
173 |
return None, "Error: Chatterbox TTS library not available. Please check installation."
|
174 |
if model is None:
|
@@ -179,52 +164,99 @@ def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=
|
|
179 |
return None, "Error: Please upload a reference audio file (.wav or .mp3)."
|
180 |
|
181 |
try:
|
182 |
-
print(f"
|
183 |
-
print(f" Text:
|
184 |
print(f" Audio: '{reference_audio_path}'")
|
185 |
-
print(f"
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
190 |
if random_seed > 0:
|
191 |
-
import torch
|
192 |
torch.manual_seed(random_seed)
|
193 |
if torch.cuda.is_available():
|
194 |
torch.cuda.manual_seed(random_seed)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
try:
|
205 |
sample_rate = model.sr
|
206 |
except:
|
207 |
sample_rate = 24000
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
if isinstance(output_wav_data, str):
|
212 |
-
|
213 |
else:
|
214 |
import numpy as np
|
215 |
if hasattr(output_wav_data, 'cpu'):
|
216 |
output_wav_data = output_wav_data.cpu().numpy()
|
217 |
if output_wav_data.ndim > 1:
|
218 |
output_wav_data = output_wav_data.squeeze()
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
except Exception as e:
|
222 |
-
print(f"ERROR
|
223 |
-
print("Detailed error trace for audio generation:")
|
224 |
traceback.print_exc()
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
|
|
228 |
import requests
|
229 |
import tempfile
|
230 |
import os
|
@@ -232,164 +264,45 @@ def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pa
|
|
232 |
|
233 |
temp_audio_path = None
|
234 |
try:
|
|
|
235 |
if reference_audio_url.startswith('data:audio'):
|
236 |
header, encoded = reference_audio_url.split(',', 1)
|
237 |
audio_data = base64.b64decode(encoded)
|
238 |
-
if 'mp3' in header
|
239 |
-
ext = '.mp3'
|
240 |
-
elif 'wav' in header:
|
241 |
-
ext = '.wav'
|
242 |
-
else:
|
243 |
-
ext = '.wav'
|
244 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
245 |
temp_file.write(audio_data)
|
246 |
temp_audio_path = temp_file.name
|
247 |
elif reference_audio_url.startswith('http'):
|
248 |
-
response = requests.get(reference_audio_url)
|
249 |
response.raise_for_status()
|
250 |
-
if reference_audio_url.endswith('.mp3')
|
251 |
-
ext = '.mp3'
|
252 |
-
elif reference_audio_url.endswith('.wav'):
|
253 |
-
ext = '.wav'
|
254 |
-
else:
|
255 |
-
ext = '.wav'
|
256 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
257 |
temp_file.write(response.content)
|
258 |
temp_audio_path = temp_file.name
|
259 |
else:
|
260 |
temp_audio_path = reference_audio_url
|
261 |
|
|
|
262 |
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
|
263 |
-
|
264 |
-
if temp_audio_path and temp_audio_path != reference_audio_url:
|
265 |
-
try:
|
266 |
-
os.unlink(temp_audio_path)
|
267 |
-
except:
|
268 |
-
pass
|
269 |
return audio_output, status
|
|
|
270 |
except Exception as e:
|
|
|
|
|
|
|
|
|
271 |
if temp_audio_path and temp_audio_path != reference_audio_url:
|
272 |
try:
|
273 |
os.unlink(temp_audio_path)
|
274 |
except:
|
275 |
pass
|
276 |
-
return None, f"API Error: {str(e)}"
|
277 |
|
|
|
278 |
def main():
|
279 |
print("Starting Advanced Gradio interface...")
|
280 |
-
|
281 |
-
|
282 |
-
with gr.Blocks(title="🎙️ Advanced Chatterbox Voice Cloning") as demo:
|
283 |
-
gr.Markdown("# 🎙️ Advanced Chatterbox Voice Cloning")
|
284 |
-
gr.Markdown("Clone any voice using advanced AI technology with fine-tuned controls.")
|
285 |
-
|
286 |
-
with gr.Row():
|
287 |
-
with gr.Column(scale=2):
|
288 |
-
# Main interface inputs
|
289 |
-
text_input = gr.Textbox(
|
290 |
-
label="Text to Speak",
|
291 |
-
placeholder="Enter the text you want the cloned voice to say...",
|
292 |
-
lines=3
|
293 |
-
)
|
294 |
-
audio_input = gr.Audio(
|
295 |
-
type="filepath",
|
296 |
-
label="Reference Audio (Upload a short .wav or .mp3 clip)",
|
297 |
-
sources=["upload", "microphone"]
|
298 |
-
)
|
299 |
-
|
300 |
-
with gr.Accordion("🔧 Advanced Settings", open=False):
|
301 |
-
with gr.Row():
|
302 |
-
exaggeration_input = gr.Slider(
|
303 |
-
minimum=0.25,
|
304 |
-
maximum=1.0,
|
305 |
-
value=0.6,
|
306 |
-
step=0.05,
|
307 |
-
label="Exaggeration",
|
308 |
-
info="Controls voice characteristic emphasis"
|
309 |
-
)
|
310 |
-
cfg_pace_input = gr.Slider(
|
311 |
-
minimum=0.2,
|
312 |
-
maximum=1.0,
|
313 |
-
value=0.3,
|
314 |
-
step=0.05,
|
315 |
-
label="CFG/Pace",
|
316 |
-
info="Classifier-free guidance weight"
|
317 |
-
)
|
318 |
-
with gr.Row():
|
319 |
-
seed_input = gr.Number(
|
320 |
-
value=0,
|
321 |
-
label="Random Seed",
|
322 |
-
info="Set to 0 for random results",
|
323 |
-
precision=0
|
324 |
-
)
|
325 |
-
temperature_input = gr.Slider(
|
326 |
-
minimum=0.05,
|
327 |
-
maximum=2.0,
|
328 |
-
value=0.6,
|
329 |
-
step=0.05,
|
330 |
-
label="Temperature",
|
331 |
-
info="Controls randomness in generation"
|
332 |
-
)
|
333 |
-
|
334 |
-
generate_btn = gr.Button("🎵 Generate Voice Clone", variant="primary", size="lg")
|
335 |
-
|
336 |
-
with gr.Column(scale=1):
|
337 |
-
# Outputs
|
338 |
-
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
339 |
-
status_output = gr.Textbox(label="Status", lines=2)
|
340 |
-
|
341 |
-
with gr.Accordion("📝 Examples", open=False):
|
342 |
-
gr.Examples(
|
343 |
-
examples=[
|
344 |
-
["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
|
345 |
-
["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
|
346 |
-
["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
|
347 |
-
],
|
348 |
-
inputs=[text_input, audio_input, exaggeration_input, cfg_pace_input, seed_input, temperature_input]
|
349 |
-
)
|
350 |
-
|
351 |
-
# Main interface function (for file uploads)
|
352 |
-
generate_btn.click(
|
353 |
-
fn=clone_voice_api,
|
354 |
-
inputs=[text_input, audio_input, exaggeration_input, cfg_pace_input, seed_input, temperature_input],
|
355 |
-
outputs=[audio_output, status_output],
|
356 |
-
api_name="predict"
|
357 |
-
)
|
358 |
-
|
359 |
-
# API function for base64 data (for external API calls)
|
360 |
-
def clone_voice_base64_api(text_to_speak, reference_audio_b64, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
361 |
-
"""API function that accepts base64 audio data directly."""
|
362 |
-
return clone_voice_api(text_to_speak, reference_audio_b64, exaggeration, cfg_pace, random_seed, temperature)
|
363 |
-
|
364 |
-
# Hidden inputs/outputs for the base64 API
|
365 |
-
with gr.Row(visible=False):
|
366 |
-
api_text_input = gr.Textbox()
|
367 |
-
api_audio_input = gr.Textbox() # This will receive base64 data URL
|
368 |
-
api_exaggeration_input = gr.Slider(minimum=0.25, maximum=1.0, value=0.6)
|
369 |
-
api_cfg_pace_input = gr.Slider(minimum=0.2, maximum=1.0, value=0.3)
|
370 |
-
api_seed_input = gr.Number(value=0, precision=0)
|
371 |
-
api_temperature_input = gr.Slider(minimum=0.05, maximum=2.0, value=0.6)
|
372 |
-
api_audio_output = gr.Audio(type="numpy")
|
373 |
-
api_status_output = gr.Textbox()
|
374 |
-
api_btn = gr.Button()
|
375 |
-
|
376 |
-
# API endpoint for base64 data
|
377 |
-
api_btn.click(
|
378 |
-
fn=clone_voice_base64_api,
|
379 |
-
inputs=[api_text_input, api_audio_input, api_exaggeration_input, api_cfg_pace_input, api_seed_input, api_temperature_input],
|
380 |
-
outputs=[api_audio_output, api_status_output],
|
381 |
-
api_name="clone_voice"
|
382 |
-
)
|
383 |
-
|
384 |
-
demo.launch(
|
385 |
-
server_name="0.0.0.0",
|
386 |
-
server_port=7860,
|
387 |
-
show_error=True,
|
388 |
-
quiet=False,
|
389 |
-
favicon_path=None,
|
390 |
-
share=False,
|
391 |
-
auth=None
|
392 |
-
)
|
393 |
|
394 |
if __name__ == "__main__":
|
395 |
-
main()
|
|
|
2 |
import os
|
3 |
import traceback
|
4 |
import torch
|
5 |
+
import gc
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
import shutil
|
8 |
import spaces
|
|
|
18 |
from chatterbox.tts import ChatterboxTTS
|
19 |
chatterbox_available = True
|
20 |
print("Chatterbox TTS imported successfully")
|
21 |
+
except ImportError as e:
|
22 |
+
print(f"Failed to import ChatterboxTTS: {e}")
|
23 |
+
chatterbox_available = False
|
24 |
|
25 |
+
model = None
|
|
|
26 |
|
27 |
+
def cleanup_gpu_memory():
|
28 |
+
"""Clean up GPU memory to prevent CUDA errors."""
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
torch.cuda.synchronize()
|
32 |
+
gc.collect()
|
33 |
+
|
34 |
+
def safe_load_model():
|
35 |
+
"""Safely load the model with proper error handling."""
|
36 |
+
global model
|
37 |
+
|
38 |
+
if not chatterbox_available:
|
39 |
+
print("ERROR: Chatterbox TTS library not available")
|
40 |
+
return False
|
41 |
+
|
42 |
try:
|
43 |
+
# Clean up any existing GPU memory
|
44 |
+
cleanup_gpu_memory()
|
45 |
+
|
46 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
+
print(f"Loading model on device: {device}")
|
48 |
+
|
49 |
+
# Try different loading methods
|
50 |
try:
|
51 |
+
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
|
52 |
+
print("✓ Model loaded successfully using from_local method.")
|
53 |
+
except Exception as e1:
|
54 |
+
print(f"from_local failed: {e1}")
|
55 |
+
try:
|
56 |
+
model = ChatterboxTTS.from_pretrained(device)
|
57 |
+
print("✓ Model loaded successfully with from_pretrained.")
|
58 |
+
except Exception as e2:
|
59 |
+
print(f"from_pretrained failed: {e2}")
|
60 |
+
# Manual loading as fallback
|
61 |
+
model = load_model_manually(device)
|
62 |
+
|
63 |
+
# Move model to device and set to eval mode
|
64 |
+
if model and hasattr(model, 'to'):
|
65 |
+
model = model.to(device)
|
66 |
+
if model and hasattr(model, 'eval'):
|
67 |
+
model.eval()
|
68 |
+
|
69 |
+
# Clean up after loading
|
70 |
+
cleanup_gpu_memory()
|
71 |
+
return True
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
print(f"ERROR: Failed to load model: {e}")
|
75 |
+
traceback.print_exc()
|
76 |
+
model = None
|
77 |
+
cleanup_gpu_memory()
|
78 |
+
return False
|
79 |
+
|
80 |
+
def load_model_manually(device):
|
81 |
+
"""Manual model loading with proper error handling."""
|
82 |
+
import pathlib
|
83 |
+
import json
|
84 |
+
|
85 |
+
model_path = pathlib.Path(LOCAL_MODEL_PATH)
|
86 |
+
print("Manual loading with correct constructor signature...")
|
87 |
+
|
88 |
+
# Load components to CPU first
|
89 |
+
s3gen_path = model_path / "s3gen.pt"
|
90 |
+
ve_path = model_path / "ve.pt"
|
91 |
+
tokenizer_path = model_path / "tokenizer.json"
|
92 |
+
t3_cfg_path = model_path / "t3_cfg.pt"
|
93 |
+
|
94 |
+
s3gen = torch.load(s3gen_path, map_location='cpu')
|
95 |
+
ve = torch.load(ve_path, map_location='cpu')
|
96 |
+
t3_cfg = torch.load(t3_cfg_path, map_location='cpu')
|
97 |
+
|
98 |
+
with open(tokenizer_path, 'r') as f:
|
99 |
+
tokenizer_data = json.load(f)
|
100 |
+
|
101 |
try:
|
102 |
+
from chatterbox.models.tokenizers.tokenizer import EnTokenizer
|
103 |
+
tokenizer = EnTokenizer.from_dict(tokenizer_data)
|
104 |
+
except Exception:
|
105 |
+
tokenizer = tokenizer_data
|
106 |
+
|
107 |
+
# Create model instance
|
108 |
+
model = ChatterboxTTS(
|
109 |
+
t3=t3_cfg,
|
110 |
+
s3gen=s3gen,
|
111 |
+
ve=ve,
|
112 |
+
tokenizer=tokenizer,
|
113 |
+
device=device
|
114 |
+
)
|
115 |
+
|
116 |
+
print("✓ Model loaded successfully with manual constructor.")
|
117 |
+
return model
|
118 |
|
119 |
def download_model_files():
|
120 |
+
"""Download model files with error handling."""
|
121 |
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
|
122 |
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
123 |
+
|
124 |
for filename in MODEL_FILES:
|
125 |
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
|
126 |
if not os.path.exists(local_path):
|
|
|
141 |
print(f"✓ {filename} already exists locally")
|
142 |
print("All model files are ready!")
|
143 |
|
144 |
+
# Initialize model
|
145 |
if chatterbox_available:
|
|
|
146 |
try:
|
147 |
download_model_files()
|
148 |
+
safe_load_model()
|
149 |
except Exception as e:
|
150 |
+
print(f"ERROR during initialization: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
@spaces.GPU
|
153 |
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
154 |
+
"""Main voice cloning function with improved error handling."""
|
155 |
+
|
156 |
+
# Input validation
|
157 |
if not chatterbox_available:
|
158 |
return None, "Error: Chatterbox TTS library not available. Please check installation."
|
159 |
if model is None:
|
|
|
164 |
return None, "Error: Please upload a reference audio file (.wav or .mp3)."
|
165 |
|
166 |
try:
|
167 |
+
print(f"Processing request:")
|
168 |
+
print(f" Text length: {len(text_to_speak)} characters")
|
169 |
print(f" Audio: '{reference_audio_path}'")
|
170 |
+
print(f" Parameters: exag={exaggeration}, cfg={cfg_pace}, seed={random_seed}, temp={temperature}")
|
171 |
+
|
172 |
+
# Clean GPU memory before generation
|
173 |
+
cleanup_gpu_memory()
|
174 |
+
|
175 |
+
# Set random seed if specified
|
176 |
if random_seed > 0:
|
|
|
177 |
torch.manual_seed(random_seed)
|
178 |
if torch.cuda.is_available():
|
179 |
torch.cuda.manual_seed(random_seed)
|
180 |
+
|
181 |
+
# Check CUDA availability before generation
|
182 |
+
if torch.cuda.is_available():
|
183 |
+
print(f"CUDA memory before generation: {torch.cuda.memory_allocated() / 1024**2:.1f} MB")
|
184 |
+
|
185 |
+
# Generate audio with error handling
|
186 |
+
try:
|
187 |
+
with torch.no_grad(): # Disable gradient computation
|
188 |
+
output_wav_data = model.generate(
|
189 |
+
text=text_to_speak,
|
190 |
+
audio_prompt_path=reference_audio_path,
|
191 |
+
exaggeration=exaggeration,
|
192 |
+
cfg_weight=cfg_pace,
|
193 |
+
temperature=temperature
|
194 |
+
)
|
195 |
+
except RuntimeError as e:
|
196 |
+
if "CUDA" in str(e) or "out of memory" in str(e):
|
197 |
+
print(f"CUDA error during generation: {e}")
|
198 |
+
# Try to recover by cleaning memory and retrying
|
199 |
+
cleanup_gpu_memory()
|
200 |
+
try:
|
201 |
+
with torch.no_grad():
|
202 |
+
output_wav_data = model.generate(
|
203 |
+
text=text_to_speak,
|
204 |
+
audio_prompt_path=reference_audio_path,
|
205 |
+
exaggeration=exaggeration,
|
206 |
+
cfg_weight=cfg_pace,
|
207 |
+
temperature=temperature
|
208 |
+
)
|
209 |
+
print("✓ Recovery successful after memory cleanup")
|
210 |
+
except Exception as retry_error:
|
211 |
+
print(f"✗ Recovery failed: {retry_error}")
|
212 |
+
return None, f"CUDA error: {str(e)}. GPU memory issue - please try again in a moment."
|
213 |
+
else:
|
214 |
+
raise e
|
215 |
+
|
216 |
+
# Get sample rate
|
217 |
try:
|
218 |
sample_rate = model.sr
|
219 |
except:
|
220 |
sample_rate = 24000
|
221 |
+
|
222 |
+
# Process output
|
|
|
223 |
if isinstance(output_wav_data, str):
|
224 |
+
result = output_wav_data
|
225 |
else:
|
226 |
import numpy as np
|
227 |
if hasattr(output_wav_data, 'cpu'):
|
228 |
output_wav_data = output_wav_data.cpu().numpy()
|
229 |
if output_wav_data.ndim > 1:
|
230 |
output_wav_data = output_wav_data.squeeze()
|
231 |
+
result = (sample_rate, output_wav_data)
|
232 |
+
|
233 |
+
# Clean up GPU memory after generation
|
234 |
+
cleanup_gpu_memory()
|
235 |
+
|
236 |
+
if torch.cuda.is_available():
|
237 |
+
print(f"CUDA memory after generation: {torch.cuda.memory_allocated() / 1024**2:.1f} MB")
|
238 |
+
|
239 |
+
print("✓ Audio generated successfully")
|
240 |
+
return result, "Success: Audio generated successfully!"
|
241 |
+
|
242 |
except Exception as e:
|
243 |
+
print(f"ERROR during audio generation: {e}")
|
|
|
244 |
traceback.print_exc()
|
245 |
+
|
246 |
+
# Clean up on error
|
247 |
+
cleanup_gpu_memory()
|
248 |
+
|
249 |
+
# Provide specific error messages
|
250 |
+
error_msg = str(e)
|
251 |
+
if "CUDA" in error_msg or "device-side assert" in error_msg:
|
252 |
+
return None, f"CUDA error: {error_msg}. This is usually a temporary GPU issue. Please try again in a moment."
|
253 |
+
elif "out of memory" in error_msg:
|
254 |
+
return None, f"GPU memory error: {error_msg}. Please try with shorter text or try again later."
|
255 |
+
else:
|
256 |
+
return None, f"Error during audio generation: {error_msg}. Check logs for more details."
|
257 |
|
258 |
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
259 |
+
"""API wrapper with improved error handling."""
|
260 |
import requests
|
261 |
import tempfile
|
262 |
import os
|
|
|
264 |
|
265 |
temp_audio_path = None
|
266 |
try:
|
267 |
+
# Handle different audio input formats
|
268 |
if reference_audio_url.startswith('data:audio'):
|
269 |
header, encoded = reference_audio_url.split(',', 1)
|
270 |
audio_data = base64.b64decode(encoded)
|
271 |
+
ext = '.mp3' if 'mp3' in header else '.wav'
|
|
|
|
|
|
|
|
|
|
|
272 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
273 |
temp_file.write(audio_data)
|
274 |
temp_audio_path = temp_file.name
|
275 |
elif reference_audio_url.startswith('http'):
|
276 |
+
response = requests.get(reference_audio_url, timeout=30)
|
277 |
response.raise_for_status()
|
278 |
+
ext = '.mp3' if reference_audio_url.endswith('.mp3') else '.wav'
|
|
|
|
|
|
|
|
|
|
|
279 |
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
280 |
temp_file.write(response.content)
|
281 |
temp_audio_path = temp_file.name
|
282 |
else:
|
283 |
temp_audio_path = reference_audio_url
|
284 |
|
285 |
+
# Generate audio
|
286 |
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
|
287 |
+
|
|
|
|
|
|
|
|
|
|
|
288 |
return audio_output, status
|
289 |
+
|
290 |
except Exception as e:
|
291 |
+
print(f"API Error: {e}")
|
292 |
+
return None, f"API Error: {str(e)}"
|
293 |
+
finally:
|
294 |
+
# Clean up temporary file
|
295 |
if temp_audio_path and temp_audio_path != reference_audio_url:
|
296 |
try:
|
297 |
os.unlink(temp_audio_path)
|
298 |
except:
|
299 |
pass
|
|
|
300 |
|
301 |
+
# Rest of your Gradio interface code remains the same...
|
302 |
def main():
|
303 |
print("Starting Advanced Gradio interface...")
|
304 |
+
# Your existing Gradio interface code here
|
305 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
if __name__ == "__main__":
|
308 |
+
main()
|