Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,433 @@
|
|
1 |
-
|
2 |
-
"""
|
3 |
-
Chatterbox Voice Cloning - Hugging Face Space
|
4 |
-
Main entry point for the application
|
5 |
-
"""
|
6 |
-
|
7 |
-
import sys
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
if __name__ == "__main__":
|
17 |
-
|
18 |
-
main()
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import traceback # For detailed error logging
|
4 |
+
import torch
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import shutil
|
7 |
+
|
8 |
+
# Import configuration
|
9 |
+
try:
|
10 |
+
from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
|
11 |
+
except ImportError:
|
12 |
+
# Fallback configuration if config.py is not found
|
13 |
+
MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
|
14 |
+
LOCAL_MODEL_PATH = "./chatterbox_model_files"
|
15 |
+
MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]
|
16 |
+
|
17 |
+
# Try importing chatterbox with better error handling
|
18 |
+
try:
|
19 |
+
from chatterbox.tts import ChatterboxTTS
|
20 |
+
chatterbox_available = True
|
21 |
+
print("Chatterbox TTS imported successfully")
|
22 |
+
except ImportError as e:
|
23 |
+
print(f"Failed to import ChatterboxTTS: {e}")
|
24 |
+
print("Trying alternative import...")
|
25 |
+
try:
|
26 |
+
import chatterbox
|
27 |
+
from chatterbox import ChatterboxTTS
|
28 |
+
chatterbox_available = True
|
29 |
+
print("Chatterbox TTS imported with alternative method")
|
30 |
+
except ImportError as e2:
|
31 |
+
print(f"Alternative import also failed: {e2}")
|
32 |
+
chatterbox_available = False
|
33 |
+
|
34 |
+
# --- Global Model Variable ---
|
35 |
+
model = None
|
36 |
+
|
37 |
+
def download_model_files():
|
38 |
+
"""Download model files from Hugging Face Hub if they don't exist locally"""
|
39 |
+
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
|
40 |
+
|
41 |
+
# Create model directory if it doesn't exist
|
42 |
+
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
43 |
+
|
44 |
+
for filename in MODEL_FILES:
|
45 |
+
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
|
46 |
+
if not os.path.exists(local_path):
|
47 |
+
print(f"Downloading {filename} from {MODEL_REPO_ID}...")
|
48 |
+
try:
|
49 |
+
downloaded_path = hf_hub_download(
|
50 |
+
repo_id=MODEL_REPO_ID,
|
51 |
+
filename=filename,
|
52 |
+
cache_dir="./cache",
|
53 |
+
force_download=False # Use cache if available
|
54 |
+
)
|
55 |
+
# Copy to our local model path
|
56 |
+
shutil.copy2(downloaded_path, local_path)
|
57 |
+
print(f"β Downloaded and copied {filename}")
|
58 |
+
except Exception as e:
|
59 |
+
print(f"β Failed to download {filename}: {e}")
|
60 |
+
raise e
|
61 |
+
else:
|
62 |
+
print(f"β {filename} already exists locally")
|
63 |
+
|
64 |
+
print("All model files are ready!")
|
65 |
+
|
66 |
+
# --- Load the Model ---
|
67 |
+
if chatterbox_available:
|
68 |
+
print("Downloading model files from Hugging Face Hub...")
|
69 |
+
try:
|
70 |
+
download_model_files()
|
71 |
+
except Exception as e:
|
72 |
+
print(f"ERROR: Failed to download model files: {e}")
|
73 |
+
print("Model loading will fail without these files.")
|
74 |
+
|
75 |
+
print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
|
76 |
+
if not os.path.exists(LOCAL_MODEL_PATH):
|
77 |
+
print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
|
78 |
+
print("Please ensure the model files were downloaded successfully.")
|
79 |
+
else:
|
80 |
+
print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
|
81 |
+
try:
|
82 |
+
# Load the model from the specified local directory
|
83 |
+
# Set device to CPU or CUDA if available
|
84 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
85 |
+
print(f"Using device: {device}")
|
86 |
+
|
87 |
+
# The correct method signature is from_local(model_path, device)
|
88 |
+
# based on the error message showing from_local is called internally
|
89 |
+
try:
|
90 |
+
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
|
91 |
+
print("Chatterbox model loaded successfully using from_local method.")
|
92 |
+
except Exception as e1:
|
93 |
+
print(f"from_local attempt failed: {e1}")
|
94 |
+
try:
|
95 |
+
# Try the corrected from_pretrained with proper parameter order
|
96 |
+
# It seems from_pretrained expects (local_path, device) not (device=device)
|
97 |
+
model = ChatterboxTTS.from_pretrained(LOCAL_MODEL_PATH, device)
|
98 |
+
print("Chatterbox model loaded successfully with corrected from_pretrained.")
|
99 |
+
except Exception as e2:
|
100 |
+
print(f"Corrected from_pretrained failed: {e2}")
|
101 |
+
try:
|
102 |
+
# Try loading individual components manually
|
103 |
+
import torch
|
104 |
+
s3gen_path = os.path.join(LOCAL_MODEL_PATH, "s3gen.pt")
|
105 |
+
ve_path = os.path.join(LOCAL_MODEL_PATH, "ve.pt")
|
106 |
+
tokenizer_path = os.path.join(LOCAL_MODEL_PATH, "tokenizer.json")
|
107 |
+
t3_cfg_path = os.path.join(LOCAL_MODEL_PATH, "t3_cfg.pt")
|
108 |
+
|
109 |
+
print(f"Loading components manually...")
|
110 |
+
print(f" s3gen: {s3gen_path}")
|
111 |
+
print(f" ve: {ve_path}")
|
112 |
+
print(f" tokenizer: {tokenizer_path}")
|
113 |
+
print(f" t3_cfg: {t3_cfg_path}")
|
114 |
+
|
115 |
+
# Load the components
|
116 |
+
s3gen = torch.load(s3gen_path, map_location=device)
|
117 |
+
ve = torch.load(ve_path, map_location=device)
|
118 |
+
|
119 |
+
# Load tokenizer
|
120 |
+
import json
|
121 |
+
with open(tokenizer_path, 'r') as f:
|
122 |
+
tokenizer = json.load(f)
|
123 |
+
|
124 |
+
# Create model instance with loaded components
|
125 |
+
model = ChatterboxTTS(s3gen, ve, tokenizer, device)
|
126 |
+
print("Chatterbox model loaded successfully with manual component loading.")
|
127 |
+
except Exception as e3:
|
128 |
+
print(f"Manual loading failed: {e3}")
|
129 |
+
raise e3
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
|
133 |
+
print("Detailed error trace:")
|
134 |
+
traceback.print_exc() # Prints the full traceback to the Hugging Face Space logs
|
135 |
+
model = None # Ensure model is None if loading fails
|
136 |
+
else:
|
137 |
+
print("ERROR: Chatterbox TTS library not available")
|
138 |
+
|
139 |
+
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
140 |
+
if not chatterbox_available:
|
141 |
+
return None, "Error: Chatterbox TTS library not available. Please check installation."
|
142 |
+
if model is None:
|
143 |
+
return None, "Error: Model not loaded. Please check the logs for details."
|
144 |
+
if not text_to_speak or text_to_speak.strip() == "":
|
145 |
+
return None, "Error: Please enter some text to speak."
|
146 |
+
if reference_audio_path is None:
|
147 |
+
return None, "Error: Please upload a reference audio file (.wav or .mp3)."
|
148 |
+
|
149 |
+
try:
|
150 |
+
print(f"Received request:")
|
151 |
+
print(f" Text: '{text_to_speak}'")
|
152 |
+
print(f" Audio: '{reference_audio_path}'")
|
153 |
+
print(f" Exaggeration: {exaggeration}")
|
154 |
+
print(f" CFG/Pace: {cfg_pace}")
|
155 |
+
print(f" Random Seed: {random_seed}")
|
156 |
+
print(f" Temperature: {temperature}")
|
157 |
+
|
158 |
+
# Set random seed if specified
|
159 |
+
if random_seed > 0:
|
160 |
+
import torch
|
161 |
+
torch.manual_seed(random_seed)
|
162 |
+
if torch.cuda.is_available():
|
163 |
+
torch.cuda.manual_seed(random_seed)
|
164 |
+
|
165 |
+
# Use the correct ChatterboxTTS generate method signature with advanced parameters
|
166 |
+
output_wav_data = model.generate(
|
167 |
+
text=text_to_speak,
|
168 |
+
audio_prompt_path=reference_audio_path,
|
169 |
+
exaggeration=exaggeration, # Controls how much the voice characteristics are emphasized
|
170 |
+
cfg_weight=cfg_pace, # Classifier-free guidance weight (pace)
|
171 |
+
temperature=temperature # Controls randomness in generation
|
172 |
+
)
|
173 |
+
|
174 |
+
# Get the sample rate from the model
|
175 |
+
try:
|
176 |
+
sample_rate = model.sr # ChatterboxTTS uses 'sr' attribute
|
177 |
+
except:
|
178 |
+
sample_rate = 24000 # Default fallback
|
179 |
+
|
180 |
+
print(f"Audio generated successfully. Output data type: {type(output_wav_data)}, Sample rate: {sample_rate}")
|
181 |
+
|
182 |
+
# Handle different output formats
|
183 |
+
if isinstance(output_wav_data, str):
|
184 |
+
# If it's a file path, return the path
|
185 |
+
return output_wav_data, "Success: Audio generated successfully!"
|
186 |
+
else:
|
187 |
+
# If it's numpy array or tensor, return with sample rate
|
188 |
+
import numpy as np
|
189 |
+
if hasattr(output_wav_data, 'cpu'):
|
190 |
+
# Convert tensor to numpy if needed
|
191 |
+
output_wav_data = output_wav_data.cpu().numpy()
|
192 |
+
|
193 |
+
# Ensure it's the right shape for Gradio (1D array)
|
194 |
+
if output_wav_data.ndim > 1:
|
195 |
+
output_wav_data = output_wav_data.squeeze()
|
196 |
+
|
197 |
+
return (sample_rate, output_wav_data), "Success: Audio generated successfully!"
|
198 |
+
|
199 |
+
except Exception as e:
|
200 |
+
print(f"ERROR: Failed during audio generation: {e}")
|
201 |
+
print("Detailed error trace for audio generation:")
|
202 |
+
traceback.print_exc() # Prints the full traceback
|
203 |
+
return None, f"Error during audio generation: {str(e)}. Check logs for more details."
|
204 |
+
|
205 |
+
# --- API Endpoint Function ---
|
206 |
+
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
|
207 |
+
"""
|
208 |
+
API version of clone_voice that accepts URL or base64 audio data
|
209 |
+
"""
|
210 |
+
import requests
|
211 |
+
import tempfile
|
212 |
+
import os
|
213 |
+
import base64
|
214 |
+
|
215 |
+
# Handle different audio input formats
|
216 |
+
temp_audio_path = None
|
217 |
+
try:
|
218 |
+
if reference_audio_url.startswith('data:audio'):
|
219 |
+
# Handle base64 encoded audio
|
220 |
+
header, encoded = reference_audio_url.split(',', 1)
|
221 |
+
audio_data = base64.b64decode(encoded)
|
222 |
+
|
223 |
+
# Determine file extension from MIME type
|
224 |
+
if 'mp3' in header:
|
225 |
+
ext = '.mp3'
|
226 |
+
elif 'wav' in header:
|
227 |
+
ext = '.wav'
|
228 |
+
else:
|
229 |
+
ext = '.wav' # Default
|
230 |
+
|
231 |
+
# Save to temporary file
|
232 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
233 |
+
temp_file.write(audio_data)
|
234 |
+
temp_audio_path = temp_file.name
|
235 |
+
|
236 |
+
elif reference_audio_url.startswith('http'):
|
237 |
+
# Download audio from URL
|
238 |
+
response = requests.get(reference_audio_url)
|
239 |
+
response.raise_for_status()
|
240 |
+
|
241 |
+
# Determine extension from URL or content type
|
242 |
+
if reference_audio_url.endswith('.mp3'):
|
243 |
+
ext = '.mp3'
|
244 |
+
elif reference_audio_url.endswith('.wav'):
|
245 |
+
ext = '.wav'
|
246 |
+
else:
|
247 |
+
ext = '.wav' # Default
|
248 |
+
|
249 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
250 |
+
temp_file.write(response.content)
|
251 |
+
temp_audio_path = temp_file.name
|
252 |
+
else:
|
253 |
+
# Assume it's a local file path
|
254 |
+
temp_audio_path = reference_audio_url
|
255 |
+
|
256 |
+
# Call the main clone_voice function
|
257 |
+
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
|
258 |
+
|
259 |
+
# Clean up temporary file if we created one
|
260 |
+
if temp_audio_path and temp_audio_path != reference_audio_url:
|
261 |
+
try:
|
262 |
+
os.unlink(temp_audio_path)
|
263 |
+
except:
|
264 |
+
pass
|
265 |
+
|
266 |
+
return audio_output, status
|
267 |
+
|
268 |
+
except Exception as e:
|
269 |
+
if temp_audio_path and temp_audio_path != reference_audio_url:
|
270 |
+
try:
|
271 |
+
os.unlink(temp_audio_path)
|
272 |
+
except:
|
273 |
+
pass
|
274 |
+
return None, f"API Error: {str(e)}"
|
275 |
|
276 |
+
# --- Define Gradio Interface ---
|
277 |
+
# --- Define Gradio Interface ---
|
278 |
+
with gr.Blocks(title="Advanced Chatterbox Voice Cloning", theme=gr.themes.Soft()) as iface:
|
279 |
+
gr.Markdown("# ποΈ Advanced Chatterbox Voice Cloning")
|
280 |
+
gr.Markdown("Clone any voice using advanced AI technology with fine-tuned controls.")
|
281 |
+
|
282 |
+
with gr.Row():
|
283 |
+
with gr.Column(scale=2):
|
284 |
+
# Main inputs
|
285 |
+
text_input = gr.Textbox(
|
286 |
+
label="Text to Speak",
|
287 |
+
placeholder="Enter the text you want the cloned voice to say...",
|
288 |
+
lines=3
|
289 |
+
)
|
290 |
+
audio_input = gr.Audio(
|
291 |
+
type="filepath",
|
292 |
+
label="Reference Audio (Upload a short .wav or .mp3 clip)",
|
293 |
+
sources=["upload", "microphone"]
|
294 |
+
)
|
295 |
+
|
296 |
+
# Advanced controls in an accordion
|
297 |
+
with gr.Accordion("π§ Advanced Settings", open=False):
|
298 |
+
with gr.Row():
|
299 |
+
exaggeration = gr.Slider(
|
300 |
+
minimum=0.25,
|
301 |
+
maximum=1.0,
|
302 |
+
value=0.6,
|
303 |
+
step=0.05,
|
304 |
+
label="Exaggeration",
|
305 |
+
info="Controls voice characteristic emphasis (0.5 = neutral, higher = more exaggerated)"
|
306 |
+
)
|
307 |
+
cfg_pace = gr.Slider(
|
308 |
+
minimum=0.2,
|
309 |
+
maximum=1.0,
|
310 |
+
value=0.3,
|
311 |
+
step=0.05,
|
312 |
+
label="CFG/Pace",
|
313 |
+
info="Classifier-free guidance weight (affects generation quality and pace)"
|
314 |
+
)
|
315 |
+
|
316 |
+
with gr.Row():
|
317 |
+
random_seed = gr.Number(
|
318 |
+
value=0,
|
319 |
+
label="Random Seed",
|
320 |
+
info="Set to 0 for random results, or use a specific number for reproducible outputs",
|
321 |
+
precision=0
|
322 |
+
)
|
323 |
+
temperature = gr.Slider(
|
324 |
+
minimum=0.05,
|
325 |
+
maximum=2.0,
|
326 |
+
value=0.6,
|
327 |
+
step=0.05,
|
328 |
+
label="Temperature",
|
329 |
+
info="Controls randomness in generation (lower = more consistent, higher = more varied)"
|
330 |
+
)
|
331 |
+
|
332 |
+
# Generate button
|
333 |
+
generate_btn = gr.Button("π΅ Generate Voice Clone", variant="primary", size="lg")
|
334 |
+
|
335 |
+
with gr.Column(scale=1):
|
336 |
+
# Outputs
|
337 |
+
audio_output = gr.Audio(
|
338 |
+
label="Generated Audio",
|
339 |
+
type="numpy",
|
340 |
+
interactive=False
|
341 |
+
)
|
342 |
+
status_output = gr.Textbox(
|
343 |
+
label="Status",
|
344 |
+
interactive=False,
|
345 |
+
lines=2
|
346 |
+
)
|
347 |
+
|
348 |
+
# API Information
|
349 |
+
with gr.Accordion("π API Usage", open=False):
|
350 |
+
gr.Markdown("""
|
351 |
+
### Using this as an API endpoint
|
352 |
+
|
353 |
+
You can use this Hugging Face Space as an API endpoint in your applications:
|
354 |
+
|
355 |
+
**Endpoint URL:** `https://your-username-voice-cloning.hf.space/api/predict`
|
356 |
+
|
357 |
+
**Example Python code:**
|
358 |
+
```python
|
359 |
+
import requests
|
360 |
+
import base64
|
361 |
+
|
362 |
+
# Encode your audio file
|
363 |
+
with open("reference_audio.wav", "rb") as f:
|
364 |
+
audio_data = base64.b64encode(f.read()).decode()
|
365 |
+
audio_url = f"data:audio/wav;base64,{audio_data}"
|
366 |
+
|
367 |
+
# API request
|
368 |
+
response = requests.post(
|
369 |
+
"https://your-username-voice-cloning.hf.space/api/predict",
|
370 |
+
json={
|
371 |
+
"data": [
|
372 |
+
"Hello, this is my cloned voice!", # text
|
373 |
+
audio_url, # reference audio (base64 or URL)
|
374 |
+
0.6, # exaggeration
|
375 |
+
0.3, # cfg_pace
|
376 |
+
0, # random_seed
|
377 |
+
0.6 # temperature
|
378 |
+
]
|
379 |
+
}
|
380 |
+
)
|
381 |
+
```
|
382 |
+
|
383 |
+
**Parameters:**
|
384 |
+
- `text_to_speak`: Text to synthesize
|
385 |
+
- `reference_audio`: Base64 encoded audio or URL
|
386 |
+
- `exaggeration`: Voice emphasis (0.25-1.0, default: 0.6)
|
387 |
+
- `cfg_pace`: Generation guidance (0.2-1.0, default: 0.3)
|
388 |
+
- `random_seed`: Reproducibility seed (0 for random, default: 0)
|
389 |
+
- `temperature`: Generation randomness (0.05-2.0, default: 0.6)
|
390 |
+
""")
|
391 |
+
|
392 |
+
# Examples
|
393 |
+
with gr.Accordion("π Examples", open=False):
|
394 |
+
gr.Examples(
|
395 |
+
examples=[
|
396 |
+
["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
|
397 |
+
["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
|
398 |
+
["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
|
399 |
+
],
|
400 |
+
inputs=[text_input, audio_input, exaggeration, cfg_pace, random_seed, temperature],
|
401 |
+
outputs=[audio_output, status_output],
|
402 |
+
fn=clone_voice,
|
403 |
+
cache_examples=False
|
404 |
+
)
|
405 |
+
|
406 |
+
# Connect the generate button
|
407 |
+
generate_btn.click(
|
408 |
+
fn=clone_voice,
|
409 |
+
inputs=[text_input, audio_input, exaggeration, cfg_pace, random_seed, temperature],
|
410 |
+
outputs=[audio_output, status_output],
|
411 |
+
api_name="clone_voice" # This enables API access
|
412 |
+
)
|
413 |
|
414 |
+
# --- Launch the Gradio App ---
|
415 |
+
def main():
|
416 |
+
print("Starting Advanced Gradio interface...")
|
417 |
+
# Launch with specific configuration for API access and avoid manifest issues
|
418 |
+
iface.launch(
|
419 |
+
server_name="0.0.0.0", # Allow external connections
|
420 |
+
server_port=7860, # Explicit port
|
421 |
+
show_error=True, # Show detailed errors
|
422 |
+
quiet=False, # Show startup logs
|
423 |
+
favicon_path=None, # Disable favicon to avoid 404
|
424 |
+
share=False, # Set to True if you want a public link
|
425 |
+
auth=None, # Add authentication if needed: ("username", "password")
|
426 |
+
app_kwargs={
|
427 |
+
"docs_url": "/docs", # Enable API docs at /docs
|
428 |
+
"redoc_url": "/redoc" # Enable alternative docs at /redoc
|
429 |
+
}
|
430 |
+
)
|
431 |
|
432 |
if __name__ == "__main__":
|
433 |
+
main()
|
|