Spaces:
Sleeping
Sleeping
File size: 6,520 Bytes
b9c076d e5c03b7 b9c076d e5c03b7 b9c076d e5c03b7 b9c076d e5c03b7 b9c076d e5c03b7 b9c076d e5c03b7 b9c076d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# core/stock_analysis.py
import requests
import json
from datetime import datetime, timedelta
from tradingview_ta import TA_Handler, Interval
from langchain.document_loaders import WebBaseLoader
from langchain.docstore.document import Document
from bs4 import BeautifulSoup
from GoogleNews import GoogleNews
from langchain.prompts import PromptTemplate
from langchain.chains import StuffDocumentsChain, LLMChain
def clean_google_news_url(url: str):
for ext in [".html", ".cms"]:
if ext in url:
return url.split(ext)[0] + ext
return url.split("&")[0]
def get_google_news_documents(query: str, max_articles: int = 10, timeout: int = 10):
googlenews = GoogleNews(lang="en")
end_date = datetime.today()
start_date = end_date - timedelta(days=2)
googlenews.set_time_range(start_date.strftime("%m/%d/%Y"), end_date.strftime("%m/%d/%Y"))
googlenews.search(query)
articles = googlenews.result()
documents = []
for article in articles[:max_articles]:
url = clean_google_news_url(article.get("link"))
try:
response = requests.get(url, timeout=timeout, headers={"User-Agent": "Mozilla/5.0"})
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
content = "\n".join([p.get_text(strip=True) for p in paragraphs if p.get_text(strip=True)])
if content and len(content) > 200:
doc = Document(
page_content=content,
metadata={
"source": "Google News",
"title": article.get("title", ""),
"published": article.get("date", ""),
"link": url,
}
)
documents.append(doc)
except Exception:
continue
return documents
def analyze_stock(ticker, llm):
try:
handler = TA_Handler(symbol=ticker, screener="india", exchange="NSE", interval=Interval.INTERVAL_1_DAY)
summary = handler.get_analysis().summary
except Exception:
return {"error": "Invalid ticker or failed to fetch trading data"}
urls = [
f"https://www.google.com/finance/quote/{ticker}:NSE?hl=en",
f"https://in.tradingview.com/symbols/NSE-{ticker}/",
f"https://in.tradingview.com/symbols/NSE-{ticker}/news/",
f"https://in.tradingview.com/symbols/NSE-{ticker}/minds/"
]
loader = WebBaseLoader(urls)
web_docs = loader.load()
news_docs = get_google_news_documents(f"Trending News for {ticker}", max_articles=10)
docs = web_docs + news_docs
prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, news indicators from different sites and detailed company financials.
Using your expertise, please analyze the stock based on the provided context below.
Context:
{input_documents}
Task:
Summarize the stock based on its historical and current data. Keep it CONCISE & BRIEF.
Evaluate the stock on the following parameters:
1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
2. Current & Future Price Trends: Analyze historical price movements and current price trends.
3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
4. Red Flags: Identify any potential risks or warning signs.
5. Provide a rating for the stock on a scale of 1 to 10.
6. Advise if the stock is a good buy for the next 1,5, 10 weeks.
7. Suggest at what price we need to buy and hold or sell the stock
PROVIDE THE DETAILS based on just the FACTS present in the document
PROVIDE THE DETAILS IN an JSON Object. Stick to the below JSON object
{{
"stock_summary": {{
"company_name": "",
"ticker": "",
"exchange": "",
"description": "",
"current_price": "",
"market_cap": "",
"historical_performance": {{
"5_day": "",
"1_month": "",
"6_months": "",
"1_year": "",
"5_years": ""
}}
}},
"evaluation_parameters": {{
"company_fundamentals": {{
"assessment": "",
"key_metrics": {{
"pe_ratio": "",
"volume":"",
"revenue_growth_yoy": "",
"net_income_growth_yoy": "",
"eps_growth_yoy": "",
"dividend_yield": "",
"balance_sheet": "",
"return_on_capital": ""
}}
}},
"current_and_future_price_trends": {{
"assessment": "",
"historical_trends": "",
"current_trends": "",
"technical_analysis_notes": "",
"technical_indicators":""
}},
"news_and_sentiment": {{
"assessment": "",
"positive_sentiment": [
"",
"",
""
],
"negative_sentiment": [
"",
"",
""
]
}},
"red_flags": [
{{
"flag": "",
"details": ""
}},
{{
"flag": "",
"details": ""
}},
{{
"flag": "",
"details": ""
}}
]
}},
"overall_rating": {{
"rating": "ranging from 1 to 10, 1 being low rated, 10 being highly rated",
"justification": ""
}},
"investment_advice": {{
"next_1_weeks_outlook": "",
"next_5_weeks_outlook": "",
"next_10_weeks_outlook": "",
"price_action_suggestions": {{
"buy": "",
"hold": "",
"sell": ""
}}
}}
}}
"""
prompt = PromptTemplate.from_template(prompt_template)
chain = StuffDocumentsChain(llm_chain=LLMChain(llm=llm, prompt=prompt), document_variable_name="input_documents")
response = chain.invoke({"input_documents": docs})
raw = response["output_text"].strip()
# Clean code block markdown if present
if raw.startswith("```json"):
raw = raw[len("```json"):]
if raw.endswith("```"):
raw = raw[:-3]
try:
return json.loads(raw.strip())
except json.JSONDecodeError:
return {"error": "Failed to parse model output", "raw": raw}
|