import gradio as gr from transformers import pipeline # Initialize the question-answering pipeline qa_pipeline = pipeline("question-answering") def answer_question(context, question): """ Function to run the QA pipeline and get the answer. :param context: The context in which the question is asked. :param question: The question that needs to be answered. :return: Answer from the QA model. """ result = qa_pipeline({'context': context, 'question': question}) return result['answer'] # Create the Gradio interface interface = gr.Interface( fn=answer_question, inputs=[ gr.Textbox(label="Context", placeholder="Enter context here...", lines=4), # Left-side input gr.Textbox(label="Question", placeholder="Ask a question here...", lines=1) # Right-side input ], outputs="text", # Output as text live=True, # Optional: Display results as the user types layout="horizontal" # Align inputs side by side ) # Launch the interface if __name__ == "__main__": interface.launch()