import gradio as gr import re import subprocess import select from huggingface_hub import snapshot_download # Download model (for demonstration, adjust based on actual model needs) snapshot_download( repo_id="Wan-AI/Wan2.1-T2V-1.3B", local_dir="./Wan2.1-T2V-1.3B" ) # Function to generate video def infer(prompt, progress=gr.Progress(track_tqdm=True)): # Reduced progress output and simplified structure command = [ "python", "-u", "-m", "generate", # Using unbuffered output "--task", "t2v-1.3B", "--size", "832*480", # You can try reducing resolution further for CPU "--ckpt_dir", "./Wan2.1-T2V-1.3B", "--sample_shift", "8", "--sample_guide_scale", "6", "--prompt", prompt, "--save_file", "generated_video.mp4" ] # Run the model inference in a subprocess process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1) # Monitor progress with a minimal progress bar progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)") video_progress_bar = None overall_steps = 0 while True: rlist, _, _ = select.select([process.stdout], [], [], 0.04) if rlist: line = process.stdout.readline() if not line: break stripped_line = line.strip() if not stripped_line: continue # Check for video generation progress progress_match = progress_pattern.search(stripped_line) if progress_match: current = int(progress_match.group(2)) total = int(progress_match.group(3)) if video_progress_bar is None: video_progress_bar = gr.Progress() video_progress_bar.update(current / total) video_progress_bar.update(current / total) continue # Process info messages (simplified) if "INFO:" in stripped_line: overall_steps += 1 continue else: print(stripped_line) if process.poll() is not None: break # Clean up and finalize the progress bar process.wait() if video_progress_bar: video_progress_bar.close() # Return the video file path if successful if process.returncode == 0: return "generated_video.mp4" else: raise Exception("Error executing command") # Gradio UI with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Wan 2.1 1.3B Video Generation") prompt = gr.Textbox(label="Prompt") submit_btn = gr.Button("Generate Video") video_res = gr.Video(label="Generated Video") submit_btn.click( fn=infer, inputs=[prompt], outputs=[video_res] ) demo.queue().launch(show_error=True, show_api=False)