|
import types |
|
import random |
|
import spaces |
|
|
|
import torch |
|
import numpy as np |
|
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler |
|
from diffusers.utils import export_to_video |
|
from diffusers import AutoModel |
|
import gradio as gr |
|
import tempfile |
|
from huggingface_hub import hf_hub_download |
|
|
|
from src.pipeline_wan_nag import NAGWanPipeline |
|
from src.transformer_wan_nag import NagWanTransformer3DModel |
|
|
|
|
|
MOD_VALUE = 32 |
|
DEFAULT_DURATION_SECONDS = 4 |
|
DEFAULT_STEPS = 4 |
|
DEFAULT_SEED = 2025 |
|
DEFAULT_H_SLIDER_VALUE = 480 |
|
DEFAULT_W_SLIDER_VALUE = 832 |
|
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 |
|
|
|
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 |
|
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
FIXED_FPS = 16 |
|
MIN_FRAMES_MODEL = 8 |
|
MAX_FRAMES_MODEL = 81 |
|
|
|
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details" |
|
|
|
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers" |
|
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX" |
|
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors" |
|
LORA_REPO_ID = "Kijai/WanVideo_comfy" |
|
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" |
|
|
|
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) |
|
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME) |
|
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16) |
|
pipe = NAGWanPipeline.from_pretrained( |
|
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16 |
|
) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0) |
|
pipe.to("cuda") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors |
|
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor |
|
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward |
|
|
|
examples = [ |
|
["A ginger cat passionately plays eletric guitar with intensity and emotion on a stage. The background is shrouded in deep darkness. Spotlights casts dramatic shadows.", DEFAULT_NAG_NEGATIVE_PROMPT, 11], |
|
["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11], |
|
["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11], |
|
] |
|
|
|
|
|
def get_duration( |
|
prompt, |
|
nag_negative_prompt, nag_scale, |
|
height, width, duration_seconds, |
|
steps, |
|
seed, randomize_seed, |
|
compare, |
|
): |
|
duration = int(duration_seconds) * int(steps) * 2.25 + 5 |
|
if compare: |
|
duration *= 2 |
|
return duration |
|
|
|
@spaces.GPU(duration=get_duration) |
|
def generate_video( |
|
prompt, |
|
nag_negative_prompt, nag_scale, |
|
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS, |
|
steps=DEFAULT_STEPS, |
|
seed=DEFAULT_SEED, randomize_seed=False, |
|
compare=True, |
|
): |
|
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) |
|
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) |
|
|
|
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) |
|
|
|
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) |
|
|
|
with torch.inference_mode(): |
|
nag_output_frames_list = pipe( |
|
prompt=prompt, |
|
nag_negative_prompt=nag_negative_prompt, |
|
nag_scale=nag_scale, |
|
nag_tau=3.5, |
|
nag_alpha=0.5, |
|
height=target_h, width=target_w, num_frames=num_frames, |
|
guidance_scale=0., |
|
num_inference_steps=int(steps), |
|
generator=torch.Generator(device="cuda").manual_seed(current_seed) |
|
).frames[0] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: |
|
nag_video_path = tmpfile.name |
|
export_to_video(nag_output_frames_list, nag_video_path, fps=FIXED_FPS) |
|
|
|
if compare: |
|
baseline_output_frames_list = pipe( |
|
prompt=prompt, |
|
nag_negative_prompt=nag_negative_prompt, |
|
height=target_h, width=target_w, num_frames=num_frames, |
|
guidance_scale=0., |
|
num_inference_steps=int(steps), |
|
generator=torch.Generator(device="cuda").manual_seed(current_seed) |
|
).frames[0] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: |
|
baseline_video_path = tmpfile.name |
|
export_to_video(baseline_output_frames_list, baseline_video_path, fps=FIXED_FPS) |
|
else: |
|
baseline_video_path = None |
|
|
|
if torch.cuda.is_available(): |
|
print("Allocated:", torch.cuda.memory_allocated() / 1024**2, "MB") |
|
print("Cached: ", torch.cuda.memory_reserved() / 1024**2, "MB") |
|
|
|
return nag_video_path, baseline_video_path, current_seed |
|
|
|
|
|
def generate_video_with_example( |
|
prompt, |
|
nag_negative_prompt, |
|
nag_scale, |
|
): |
|
nag_video_path, baseline_video_path, seed = generate_video( |
|
prompt=prompt, |
|
nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale, |
|
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS, |
|
steps=DEFAULT_STEPS, |
|
seed=DEFAULT_SEED, randomize_seed=False, |
|
compare=True, |
|
) |
|
if torch.cuda.is_available(): |
|
print("Allocated:", torch.cuda.memory_allocated() / 1024**2, "MB") |
|
print("Cached: ", torch.cuda.memory_reserved() / 1024**2, "MB") |
|
return nag_video_path, baseline_video_path, \ |
|
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \ |
|
DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, True |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown('''# Normalized Attention Guidance (NAG) for fast 4 steps Wan2.1-T2V-14B with CausVid LoRA |
|
Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/). |
|
|
|
[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors). |
|
''') |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
max_lines=3, |
|
placeholder="Enter your prompt", |
|
) |
|
nag_negative_prompt = gr.Textbox( |
|
label="Negative Prompt for NAG", |
|
value=DEFAULT_NAG_NEGATIVE_PROMPT, |
|
max_lines=3, |
|
) |
|
nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=11.) |
|
compare = gr.Checkbox( |
|
label="Compare with baseline", |
|
info="If unchecked, only sample with NAG will be generated.", value=True, |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=DEFAULT_STEPS, label="Inference Steps") |
|
duration_seconds_input = gr.Slider( |
|
minimum=1, maximum=5, step=1, value=DEFAULT_DURATION_SECONDS, |
|
label="Duration (seconds)", |
|
) |
|
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED, interactive=True) |
|
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) |
|
with gr.Row(): |
|
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, |
|
value=DEFAULT_H_SLIDER_VALUE, |
|
label=f"Output Height (multiple of {MOD_VALUE})") |
|
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, |
|
value=DEFAULT_W_SLIDER_VALUE, |
|
label=f"Output Width (multiple of {MOD_VALUE})") |
|
|
|
generate_button = gr.Button("Generate Video", variant="primary") |
|
with gr.Column(): |
|
nag_video_output = gr.Video(label="Video with NAG", autoplay=True, interactive=False) |
|
baseline_video_output = gr.Video(label="Baseline Video without NAG", autoplay=True, interactive=False) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=generate_video_with_example, |
|
inputs=[prompt, nag_negative_prompt, nag_scale], |
|
outputs=[ |
|
nag_video_output, baseline_video_output, |
|
height_input, width_input, duration_seconds_input, |
|
steps_slider, |
|
seed_input, |
|
compare, |
|
], |
|
cache_examples="lazy" |
|
) |
|
|
|
ui_inputs = [ |
|
prompt, |
|
nag_negative_prompt, nag_scale, |
|
height_input, width_input, duration_seconds_input, |
|
steps_slider, |
|
seed_input, randomize_seed_checkbox, |
|
compare, |
|
] |
|
generate_button.click( |
|
fn=generate_video, |
|
inputs=ui_inputs, |
|
outputs=[nag_video_output, baseline_video_output, seed_input], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |
|
|