Wan-fusionX-Lora-T2V / app_gradio_lora.py
rahul7star's picture
Update app_gradio_lora.py
79f7542 verified
import types
import random
import spaces
import os
import torch
import numpy as np
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
from src.pipeline_wan_nag import NAGWanPipeline
from src.transformer_wan_nag import NagWanTransformer3DModel
# Dummy constants (replace with actual model values)
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 4
DEFAULT_STEPS = 4
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = NAGWanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
pipe.to("cuda")
# Patch transformer methods
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
# --- Predefined LoRAs ---
AVAILABLE_LORAS = [
{
"label": "CausVid LoRA",
"repo_id": "Kijai/WanVideo_comfy",
"filename": "Wan21_CausVid_14B_T2V_lora_rank32.safetensors",
"adapter_name": "causvid_lora",
"default_weight": 0.95,
"scale_blocks": ["blocks.0"],
},
{
"label": "Detail Enhancer V1",
"repo_id": "vrgamedevgirl84/Wan14BT2VFusioniX",
"filename": "OtherLoRa's/DetailEnhancerV1.safetensors",
"adapter_name": "mps_lora",
"default_weight": 0.7
}
]
def load_loras_from_ui(selected_labels, weights, custom_repo, custom_file, custom_weight):
lora_adapters = []
lora_weights = []
selected_configs = []
for i, label in enumerate(selected_labels):
lora = next((l for l in AVAILABLE_LORAS if l["label"] == label), None)
if lora:
config = lora.copy()
config["weight"] = weights[i]
selected_configs.append(config)
# if custom_repo and custom_file:
# adapter_name = os.path.splitext(os.path.basename(custom_file))[0]
# selected_configs.append({
# "repo_id": custom_repo,
# "filename": custom_file,
# "adapter_name": adapter_name,
# "weight": float(custom_weight),
# })
for config in selected_configs:
snapshot_path = snapshot_download(
repo_id=config["repo_id"],
allow_patterns=[config["filename"]],
repo_type="model"
)
lora_path = os.path.join(snapshot_path, config["filename"])
pipe.load_lora_weights(lora_path, adapter_name=config["adapter_name"])
if config.get("scale_blocks"):
for name, param in pipe.transformer.named_parameters():
if "lora_B" in name and any(b in name for b in config["scale_blocks"]):
param.data *= 0.25
lora_adapters.append(config["adapter_name"])
lora_weights.append(config["weight"])
if lora_adapters:
pipe.set_adapters(lora_adapters, adapter_weights=lora_weights)
pipe.fuse_lora()
print(f"✅ Fused LoRAs: {lora_adapters}")
# def get_duration(
# prompt,
# nag_negative_prompt, nag_scale,
# height, width, duration_seconds,
# steps,
# seed, randomize_seed,
# compare,
# ):
# duration = int(duration_seconds) * int(steps) * 2.25 + 5
# if compare:
# duration *= 2
# return duration
@spaces.GPU(duration=200)
def generate_video(prompt, nag_negative_prompt, nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
steps=DEFAULT_STEPS, seed=DEFAULT_SEED, randomize_seed=False, compare=True):
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
with torch.inference_mode():
nag_output_frames_list = pipe(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
nag_tau=3.5,
nag_alpha=0.5,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=0.,
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
nag_video_path = tmpfile.name
export_to_video(nag_output_frames_list, nag_video_path, fps=FIXED_FPS)
if compare:
baseline_output_frames_list = pipe(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=0.,
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
baseline_video_path = tmpfile.name
export_to_video(baseline_output_frames_list, baseline_video_path, fps=FIXED_FPS)
else:
baseline_video_path = None
return nag_video_path, baseline_video_path, current_seed
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Wan2.1-T2V-14B + NAG + LoRA Control")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
nag_negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NAG_NEGATIVE_PROMPT)
nag_scale = gr.Slider(1., 20., value=11., step=0.25, label="NAG Scale")
compare = gr.Checkbox(label="Compare with baseline", value=True)
with gr.Accordion("Advanced", open=False):
steps_slider = gr.Slider(1, 8, value=DEFAULT_STEPS, label="Inference Steps")
duration_seconds_input = gr.Slider(1, 5, value=DEFAULT_DURATION_SECONDS, label="Duration (seconds)")
seed_input = gr.Slider(0, MAX_SEED, step=1, value=DEFAULT_SEED, label="Seed")
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
height_input = gr.Slider(SLIDER_MIN_H, SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label="Height")
width_input = gr.Slider(SLIDER_MIN_W, SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label="Width")
with gr.Accordion("LoRA Settings", open=False):
lora_selector = gr.CheckboxGroup([l["label"] for l in AVAILABLE_LORAS], label="Select Predefined LoRAs")
lora_sliders = [
gr.Slider(0.0, 1.5, value=l["default_weight"], label=f"{l['label']} Weight")
for l in AVAILABLE_LORAS
]
# custom_repo = gr.Textbox(label="Custom Repo ID (optional)", placeholder="e.g. my-user/my-repo")
# custom_file = gr.Textbox(label="Custom Filename (optional)", placeholder="e.g. my_model.safetensors")
# custom_weight = gr.Slider(0.0, 1.5, value=1.0, label="Custom Weight")
generate_button = gr.Button("Generate Video")
with gr.Column():
nag_video_output = gr.Video(label="Video with NAG")
baseline_video_output = gr.Video(label="Baseline Video")
def generate_wrapper(*args):
selected_labels = args[-5]
if not isinstance(selected_labels, list):
selected_labels = [] # Ensure it's iterable even if empty or NaN
lora_weights = args[-4:-4 + len(AVAILABLE_LORAS)]
if selected_labels:
load_loras_from_ui(selected_labels, lora_weights)
return generate_video(*args[:-5])
inputs = [
prompt,
nag_negative_prompt, nag_scale,
height_input, width_input, duration_seconds_input,
steps_slider, seed_input, randomize_seed_checkbox, compare,
lora_selector # ✅ CheckboxGroup - must be BEFORE sliders
] + lora_sliders
generate_button.click(
fn=generate_wrapper,
inputs=inputs,
outputs=[nag_video_output, baseline_video_output, seed_input],
)
if __name__ == "__main__":
demo.queue().launch()