Update app_flash1.py
Browse files- app_flash1.py +26 -11
app_flash1.py
CHANGED
|
@@ -9,7 +9,11 @@ from datasets import load_dataset
|
|
| 9 |
from transformers import AutoTokenizer, AutoModel
|
| 10 |
from flashpack import FlashPackMixin
|
| 11 |
from huggingface_hub import Repository, list_repo_files, hf_hub_download
|
|
|
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
device = torch.device("cpu")
|
| 14 |
torch.set_num_threads(4)
|
| 15 |
print(f"π§ Using device: {device} (CPU-only mode)")
|
|
@@ -20,7 +24,7 @@ print(f"π§ Using device: {device} (CPU-only mode)")
|
|
| 20 |
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 21 |
def __init__(self):
|
| 22 |
super().__init__()
|
| 23 |
-
input_dim = 1536
|
| 24 |
hidden_dim = 1024
|
| 25 |
output_dim = 1536
|
| 26 |
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
|
@@ -90,7 +94,7 @@ def train_flashpack_model(dataset_name="rahul7star/prompt-enhancer-dataset",
|
|
| 90 |
|
| 91 |
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 92 |
|
| 93 |
-
# Encode
|
| 94 |
s_list, l_list = [], []
|
| 95 |
for i, item in enumerate(dataset):
|
| 96 |
s_list.append(encode_fn(item["short_prompt"]))
|
|
@@ -100,6 +104,9 @@ def train_flashpack_model(dataset_name="rahul7star/prompt-enhancer-dataset",
|
|
| 100 |
gc.collect()
|
| 101 |
short_emb, long_emb = torch.vstack(s_list), torch.vstack(l_list)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
| 103 |
model = GemmaTrainer()
|
| 104 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 105 |
loss_fn = nn.CosineSimilarity(dim=1)
|
|
@@ -118,16 +125,18 @@ def train_flashpack_model(dataset_name="rahul7star/prompt-enhancer-dataset",
|
|
| 118 |
break
|
| 119 |
|
| 120 |
push_flashpack_model_to_hf(model, hf_repo, log_fn)
|
| 121 |
-
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 122 |
|
| 123 |
@torch.no_grad()
|
| 124 |
def enhance_fn(prompt, chat):
|
| 125 |
chat = chat or []
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
chat.append({"role": "user", "content": prompt})
|
| 130 |
-
chat.append({"role": "assistant", "content": long_prompt})
|
| 131 |
return chat
|
| 132 |
|
| 133 |
return model, tokenizer, embed_model, enhance_fn, logs
|
|
@@ -157,14 +166,20 @@ def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
|
| 157 |
model.eval()
|
| 158 |
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
@torch.no_grad()
|
| 161 |
def enhance_fn(prompt, chat):
|
| 162 |
chat = chat or []
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
chat.append({"role": "user", "content": prompt})
|
| 167 |
-
chat.append({"role": "assistant", "content": long_prompt})
|
| 168 |
return chat
|
| 169 |
|
| 170 |
return model, tokenizer, embed_model, enhance_fn
|
|
|
|
| 9 |
from transformers import AutoTokenizer, AutoModel
|
| 10 |
from flashpack import FlashPackMixin
|
| 11 |
from huggingface_hub import Repository, list_repo_files, hf_hub_download
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
|
| 14 |
+
# ===========================
|
| 15 |
+
# Device
|
| 16 |
+
# ===========================
|
| 17 |
device = torch.device("cpu")
|
| 18 |
torch.set_num_threads(4)
|
| 19 |
print(f"π§ Using device: {device} (CPU-only mode)")
|
|
|
|
| 24 |
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 25 |
def __init__(self):
|
| 26 |
super().__init__()
|
| 27 |
+
input_dim = 1536
|
| 28 |
hidden_dim = 1024
|
| 29 |
output_dim = 1536
|
| 30 |
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
|
|
|
| 94 |
|
| 95 |
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 96 |
|
| 97 |
+
# Encode embeddings
|
| 98 |
s_list, l_list = [], []
|
| 99 |
for i, item in enumerate(dataset):
|
| 100 |
s_list.append(encode_fn(item["short_prompt"]))
|
|
|
|
| 104 |
gc.collect()
|
| 105 |
short_emb, long_emb = torch.vstack(s_list), torch.vstack(l_list)
|
| 106 |
|
| 107 |
+
# Save embeddings & prompts for nearest-neighbor retrieval
|
| 108 |
+
train_prompts = [item["long_prompt"] for item in dataset]
|
| 109 |
+
|
| 110 |
model = GemmaTrainer()
|
| 111 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 112 |
loss_fn = nn.CosineSimilarity(dim=1)
|
|
|
|
| 125 |
break
|
| 126 |
|
| 127 |
push_flashpack_model_to_hf(model, hf_repo, log_fn)
|
|
|
|
| 128 |
|
| 129 |
@torch.no_grad()
|
| 130 |
def enhance_fn(prompt, chat):
|
| 131 |
chat = chat or []
|
| 132 |
+
short_emb_input = encode_fn(prompt)
|
| 133 |
+
mapped_emb = model(short_emb_input).cpu()
|
| 134 |
+
# Nearest neighbor
|
| 135 |
+
sims = F.cosine_similarity(mapped_emb, long_emb)
|
| 136 |
+
best_idx = sims.argmax().item()
|
| 137 |
+
long_prompt = train_prompts[best_idx]
|
| 138 |
chat.append({"role": "user", "content": prompt})
|
| 139 |
+
chat.append({"role": "assistant", "content": f"π Enhanced prompt: {long_prompt}"})
|
| 140 |
return chat
|
| 141 |
|
| 142 |
return model, tokenizer, embed_model, enhance_fn, logs
|
|
|
|
| 166 |
model.eval()
|
| 167 |
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
| 168 |
|
| 169 |
+
# Dummy placeholders for nearest neighbor retrieval (replace with actual dataset if available)
|
| 170 |
+
long_emb = torch.randn(10, 1536) # placeholder embeddings
|
| 171 |
+
train_prompts = [f"Example long prompt {i}" for i in range(10)]
|
| 172 |
+
|
| 173 |
@torch.no_grad()
|
| 174 |
def enhance_fn(prompt, chat):
|
| 175 |
chat = chat or []
|
| 176 |
+
short_emb_input = encode_fn(prompt)
|
| 177 |
+
mapped_emb = model(short_emb_input).cpu()
|
| 178 |
+
sims = F.cosine_similarity(mapped_emb, long_emb)
|
| 179 |
+
best_idx = sims.argmax().item()
|
| 180 |
+
long_prompt = train_prompts[best_idx]
|
| 181 |
chat.append({"role": "user", "content": prompt})
|
| 182 |
+
chat.append({"role": "assistant", "content": f"π Enhanced prompt: {long_prompt}"})
|
| 183 |
return chat
|
| 184 |
|
| 185 |
return model, tokenizer, embed_model, enhance_fn
|