Framepack-H111 / compare_safetensors_weights.py
rahul7star's picture
Upload 303 files
e0336bc verified
import argparse
import logging
import gc
import math
from pathlib import Path
from typing import Dict, Set, Tuple, List, Any
import torch
from safetensors import safe_open
from tqdm import tqdm
import numpy as np
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Use MPS if available on Mac, otherwise CUDA or CPU
if torch.backends.mps.is_available():
DEFAULT_DEVICE = "mps"
elif torch.cuda.is_available():
DEFAULT_DEVICE = "cuda"
else:
DEFAULT_DEVICE = "cpu"
def get_tensor_keys(filepath: Path) -> Set[str]:
"""Gets all tensor keys from a safetensors file without loading tensors."""
keys = set()
try:
with safe_open(filepath, framework="pt", device="cpu") as f:
keys = set(f.keys())
logging.debug(f"Found {len(keys)} keys in {filepath.name}")
return keys
except Exception as e:
logging.error(f"Error opening or reading keys from {filepath}: {e}")
raise
def compare_tensors(
key: str, file1: Path, file2: Path, device: torch.device, atol: float
) -> Tuple[bool, float, float, float]:
"""
Loads and compares a single tensor from two files.
Args:
key: The tensor key to compare.
file1: Path to the first safetensors file.
file2: Path to the second safetensors file.
device: The torch device to use for comparison.
atol: Absolute tolerance for torch.allclose check.
Returns:
Tuple containing:
- is_close: Boolean indicating if tensors are close within tolerance.
- mean_abs_diff: Mean absolute difference.
- max_abs_diff: Maximum absolute difference.
- cosine_sim: Cosine similarity (-2.0 if not applicable/error).
"""
# Initialize variables to handle potential early returns
t1, t2, diff = None, None, None
mean_abs_diff = float('nan')
max_abs_diff = float('nan')
cosine_sim = -2.0 # Use -2.0 to indicate not computed or error
is_close = False
try:
# Use safe_open for lazy loading
with safe_open(file1, framework="pt", device="cpu") as f1, \
safe_open(file2, framework="pt", device="cpu") as f2:
if key not in f1.keys():
logging.warning(f"Key '{key}' missing in Model 1 ({file1.name}). Skipping comparison for this key.")
# No need to return here, let finally block handle cleanup if t2 was loaded
elif key not in f2.keys():
logging.warning(f"Key '{key}' missing in Model 2 ({file2.name}). Skipping comparison for this key.")
# Load t1 to ensure it's deleted in finally if needed
t1 = f1.get_tensor(key)
else:
# Both keys exist, proceed with loading
t1 = f1.get_tensor(key)
t2 = f2.get_tensor(key)
# --- Basic Checks ---
if t1.shape != t2.shape:
logging.warning(
f"Shape mismatch for key '{key}': {t1.shape} vs {t2.shape}. Cannot compare."
)
# Return values indicating mismatch; t1/t2 will be cleaned up by finally
return False, float('nan'), float('nan'), -2.0 # Use NaN/special value for mismatch
if t1.dtype != t2.dtype:
logging.warning(
f"Dtype mismatch for key '{key}': {t1.dtype} vs {t2.dtype}. Will attempt cast for comparison."
)
# Attempt comparison anyway, might fail or give less meaningful results
try:
t2 = t2.to(t1.dtype)
except Exception as cast_e:
logging.error(f"Could not cast tensor '{key}' for comparison: {cast_e}")
# Return values indicating error; t1/t2 will be cleaned up by finally
return False, float('nan'), float('nan'), -2.0
# --- Move to device for computation ---
try:
# Move original tensors (or casted t2)
t1_dev = t1.to(device)
t2_dev = t2.to(device)
except Exception as move_e:
logging.error(f"Could not move tensor '{key}' to device '{device}': {move_e}. Trying CPU.")
device = torch.device('cpu')
t1_dev = t1.to(device)
t2_dev = t2.to(device)
# --- Comparison Metrics ---
with torch.no_grad():
# Use float32 for difference calculation stability
diff = torch.abs(t1_dev.float() - t2_dev.float()) # Assign diff here
mean_abs_diff = torch.mean(diff).item()
max_abs_diff = torch.max(diff).item()
# torch.allclose check
is_close = torch.allclose(t1_dev, t2_dev, atol=atol, rtol=0) # rtol=0 for FP16 comparison mostly depends on atol
# Cosine Similarity (avoid for scalars, ensure vectors are flat)
if t1_dev.numel() > 1:
try:
# Ensure tensors are flat and float for cosine sim
cos_sim_val = torch.nn.functional.cosine_similarity(
t1_dev.flatten().float(), t2_dev.flatten().float(), dim=0
).item()
# Handle potential NaN/Inf from zero vectors etc.
cosine_sim = cos_sim_val if math.isfinite(cos_sim_val) else -1.0
except Exception as cs_err:
logging.warning(f"Could not compute cosine similarity for '{key}': {cs_err}")
cosine_sim = -1.0 # Indicate computation error
elif t1_dev.numel() == 1:
cosine_sim = 1.0 if torch.allclose(t1_dev, t2_dev) else 0.0 # Define for scalars
# Clean up device tensors explicitly after use
del t1_dev, t2_dev
except Exception as e:
logging.error(f"Unhandled error comparing tensor '{key}': {e}", exc_info=True)
# Return default failure values
return False, float('nan'), float('nan'), -2.0
finally:
# --- Modified Finally Block ---
# Clear potential tensor references
if t1 is not None:
del t1
if t2 is not None:
del t2
if diff is not None: # Now 'diff' might be defined or not
del diff
# Aggressive garbage collection and cache clearing
gc.collect()
if device.type == 'cuda':
torch.cuda.empty_cache()
elif device.type == 'mps':
try: # Newer pytorch versions have empty_cache for mps
torch.mps.empty_cache()
except AttributeError:
pass # Ignore if not available
# Return the calculated values if comparison was successful
return is_close, mean_abs_diff, max_abs_diff, cosine_sim
def compare_models(file1_path: Path, file2_path: Path, device_str: str, atol: float, top_n_diff: int):
"""
Compares two safetensors models weight by weight.
Args:
file1_path: Path to the first model file.
file2_path: Path to the second model file.
device_str: Device string ('cpu', 'cuda', 'mps').
atol: Absolute tolerance for closeness check.
top_n_diff: Number of most different tensors to report.
"""
if not file1_path.is_file():
logging.error(f"File not found: {file1_path}")
return
if not file2_path.is_file():
logging.error(f"File not found: {file2_path}")
return
try:
device = torch.device(device_str)
logging.info(f"Using device: {device}")
except Exception as e:
logging.warning(f"Could not select device '{device_str}', falling back to CPU. Error: {e}")
device = torch.device("cpu")
logging.info(f"Comparing Model 1: {file1_path.name}")
logging.info(f" Model 2: {file2_path.name}")
logging.info(f"Absolute tolerance (atol) for closeness: {atol}")
try:
keys1 = get_tensor_keys(file1_path)
keys2 = get_tensor_keys(file2_path)
except Exception:
return # Error already logged by get_tensor_keys
common_keys = sorted(list(keys1.intersection(keys2)))
unique_keys1 = sorted(list(keys1 - keys2))
unique_keys2 = sorted(list(keys2 - keys1))
logging.info(f"Found {len(common_keys)} common tensor keys.")
if unique_keys1:
logging.warning(f"{len(unique_keys1)} keys unique to Model 1 ({file1_path.name}): {unique_keys1[:10]}{'...' if len(unique_keys1) > 10 else ''}")
if unique_keys2:
logging.warning(f"{len(unique_keys2)} keys unique to Model 2 ({file2_path.name}): {unique_keys2[:10]}{'...' if len(unique_keys2) > 10 else ''}")
if not common_keys:
logging.error("No common keys found between models. Cannot compare.")
return
results: List[Dict[str, Any]] = []
close_count = 0
compared_count = 0 # Track how many comparisons were attempted
valid_comparisons = 0 # Track successful comparisons with numerical results
mismatched_shape_keys = []
comparison_error_keys = []
all_mean_abs_diffs = []
all_max_abs_diffs = []
all_cosine_sims = []
logging.info("Starting tensor comparison...")
for key in tqdm(common_keys, desc="Comparing Tensors"):
compared_count += 1
is_close, mean_ad, max_ad, cos_sim = compare_tensors(
key, file1_path, file2_path, device, atol
)
# Check for comparison failure (NaN or -2)
if math.isnan(mean_ad) or math.isnan(max_ad) or cos_sim == -2.0:
# Check if it was specifically a shape mismatch (common case)
# Re-check shapes briefly - less efficient but simple for logging
try:
with safe_open(file1_path, framework="pt", device="cpu") as f1, \
safe_open(file2_path, framework="pt", device="cpu") as f2:
t1_shape = f1.get_shape(key)
t2_shape = f2.get_shape(key)
if t1_shape != t2_shape:
mismatched_shape_keys.append(key)
else:
comparison_error_keys.append(key) # Other error
except Exception:
comparison_error_keys.append(key) # Error getting shapes or other issue
logging.debug(f"Skipping results aggregation for key '{key}' due to comparison errors/mismatch.")
continue # Skip adding results for this key
# If we reach here, comparison was numerically successful
valid_comparisons += 1
if is_close:
close_count += 1
all_mean_abs_diffs.append(mean_ad)
all_max_abs_diffs.append(max_ad)
# Store cosine similarity if validly computed (-1 means computation issue like 0 vector)
if cos_sim >= -1.0: # Allow -1 (error during calc) but not -2 (no calc attempted/major error)
all_cosine_sims.append(cos_sim)
results.append({
"key": key,
"is_close": is_close,
"mean_abs_diff": mean_ad,
"max_abs_diff": max_ad,
"cosine_sim": cos_sim
})
# --- Summary ---
logging.info("\n--- Comparison Summary ---")
logging.info(f"Attempted comparison for {compared_count} common keys.")
if mismatched_shape_keys:
logging.warning(f"Found {len(mismatched_shape_keys)} keys with mismatched shapes (skipped): {mismatched_shape_keys[:5]}{'...' if len(mismatched_shape_keys) > 5 else ''}")
if comparison_error_keys:
logging.error(f"Encountered errors during comparison for {len(comparison_error_keys)} keys (skipped): {comparison_error_keys[:5]}{'...' if len(comparison_error_keys) > 5 else ''}")
if valid_comparisons == 0:
logging.error("No tensors could be validly compared numerically (check for shape mismatches or errors).")
return
logging.info(f"Successfully compared {valid_comparisons} tensors numerically.")
logging.info(f"Tensors within tolerance (atol={atol}): {close_count} / {valid_comparisons} ({close_count/valid_comparisons:.2%})")
# Calculate overall stats only on valid comparisons
avg_mean_ad = np.mean(all_mean_abs_diffs) if all_mean_abs_diffs else float('nan')
avg_max_ad = np.mean(all_max_abs_diffs) if all_max_abs_diffs else float('nan')
overall_max_ad = np.max(all_max_abs_diffs) if all_max_abs_diffs else float('nan')
overall_max_ad_key = max(results, key=lambda x: x.get('max_abs_diff', -float('inf')))['key'] if results else 'N/A'
# Filter out -1 cosine sims before calculating stats if desired, or include them
valid_cosine_sims = [cs for cs in all_cosine_sims if cs >= 0] # Only positive sims for avg/min
avg_cosine_sim = np.mean(valid_cosine_sims) if valid_cosine_sims else float('nan')
min_cosine_sim = np.min(valid_cosine_sims) if valid_cosine_sims else float('nan')
logging.info(f"Average Mean Absolute Difference (MAD): {avg_mean_ad:.6g}")
logging.info(f"Average Max Absolute Difference: {avg_max_ad:.6g}")
logging.info(f"Overall Maximum Absolute Difference: {overall_max_ad:.6g} (found in tensor '{overall_max_ad_key}')")
logging.info(f"Average Cosine Similarity (valid>=0): {avg_cosine_sim:.6f}" if not math.isnan(avg_cosine_sim) else "Average Cosine Similarity (valid>=0): N/A")
logging.info(f"Minimum Cosine Similarity (valid>=0): {min_cosine_sim:.6f}" if not math.isnan(min_cosine_sim) else "Minimum Cosine Similarity (valid>=0): N/A")
# --- Top Differences ---
# Sort by max absolute difference descending (handle potential missing keys)
results.sort(key=lambda x: x.get("max_abs_diff", -float('inf')), reverse=True)
logging.info(f"\n--- Top {min(top_n_diff, len(results))} Tensors by Max Absolute Difference (Numerically Compared Only) ---")
for i in range(min(top_n_diff, len(results))):
res = results[i]
# Ensure keys exist before accessing
key = res.get('key', 'ERROR_MISSING_KEY')
max_ad_val = res.get('max_abs_diff', float('nan'))
mean_ad_val = res.get('mean_abs_diff', float('nan'))
cos_sim_val = res.get('cosine_sim', float('nan'))
close_val = res.get('is_close', 'N/A')
logging.info(
f"{i+1}. Key: {key:<50} "
f"MaxAD: {max_ad_val:.6g} | "
f"MeanAD: {mean_ad_val:.6g} | "
f"CosSim: {cos_sim_val:.4f} | "
f"Close: {close_val}"
)
# --- Interpretation for LoRA ---
logging.info("\n--- LoRA Compatibility Interpretation ---")
# Prioritize architectural differences
if unique_keys1 or unique_keys2 or mismatched_shape_keys:
logging.error("Models have architectural differences (unique keys or mismatched shapes found). Direct LoRA swapping is NOT recommended.")
if unique_keys1 or unique_keys2:
logging.warning(" - Different sets of weights exist.")
if mismatched_shape_keys:
logging.warning(f" - Mismatched shapes found for keys like: {mismatched_shape_keys[0]}")
elif comparison_error_keys:
logging.warning("Some tensors could not be compared due to errors (other than shape mismatch). Check logs. LoRA compatibility might be affected.")
else:
# Assess based on numerical differences if architecture matches
logging.info("Models appear to have the same architecture (matching keys and shapes). Assessing numerical similarity:")
if avg_mean_ad < 1e-5 and overall_max_ad < 1e-3:
logging.info(" -> Differences are very small. Models appear highly similar. High LoRA compatibility expected.")
elif avg_mean_ad < 1e-4 and overall_max_ad < 5e-3:
logging.info(" -> Differences are small. Models appear quite similar. Good LoRA compatibility expected.")
elif avg_mean_ad < 1e-3 and overall_max_ad < 1e-2:
logging.info(" -> Moderate differences detected. LoRAs might work but performance could vary, especially if targeting layers with larger differences.")
else:
logging.warning(" -> Significant numerical differences detected (Average MAD > 1e-3 or Overall MaxAD > 0.01). LoRA compatibility is questionable. Performance may degrade even with matching architecture.")
if not math.isnan(min_cosine_sim) and min_cosine_sim < 0.98: # Stricter threshold for matching architecture
logging.warning(f" -> Some tensors have lower cosine similarity (min >= 0: {min_cosine_sim:.4f}), indicating potential directional differences. This could affect LoRA.")
def main():
parser = argparse.ArgumentParser(
description="Compare weights between two safetensors model files.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"model1_path", type=str, help="Path to the first .safetensors model file."
)
parser.add_argument(
"model2_path", type=str, help="Path to the second .safetensors model file."
)
parser.add_argument(
"--device",
type=str,
default=DEFAULT_DEVICE,
choices=["cpu", "cuda", "mps"],
help="Device to use for tensor comparisons ('cuda'/'mps' recommended if available).",
)
parser.add_argument(
"--atol",
type=float,
default=1e-4, # A reasonable default for FP16 comparison
help="Absolute tolerance (atol) for torch.allclose check to consider tensors 'close'.",
)
parser.add_argument(
"--top_n_diff",
type=int,
default=10,
help="Report details for the top N tensors with the largest maximum absolute difference.",
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="Enable debug logging."
)
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
compare_models(
Path(args.model1_path),
Path(args.model2_path),
args.device,
args.atol,
args.top_n_diff,
)
if __name__ == "__main__":
main()